| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf1.g |
⊢ ( 𝜑 → 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 2 |
|
tposcurf1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
tposcurf1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
tposcurf1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
tposcurf1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 6 |
|
tposcurf1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 7 |
|
tposcurf1.k |
⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 8 |
1
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) = ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ) |
| 9 |
8
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) |
| 10 |
7 9
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) |
| 11 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 12 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 13 |
3 4 5 12
|
cofuswapfcl |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 15 |
|
eqid |
⊢ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) |
| 16 |
11 2 3 4 13 14 6 15
|
curf1cl |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 17 |
10 16
|
eqeltrd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |