| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf1.g |
⊢ ( 𝜑 → 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 2 |
|
tposcurf1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
tposcurf1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
tposcurf1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
tposcurf1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 6 |
|
tposcurf1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 7 |
|
tposcurf1.k |
⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 8 |
|
tposcurf1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 9 |
|
tposcurf11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
1
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) = ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ) |
| 11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) |
| 12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = ( 1st ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) ) |
| 14 |
13
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) = ( ( 1st ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) ‘ 𝑌 ) ) |
| 15 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 16 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 17 |
3 4 5 16
|
cofuswapfcl |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 18 |
|
eqid |
⊢ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) |
| 19 |
15 2 3 4 17 8 6 18 9
|
curf11 |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) ‘ 𝑌 ) = ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑌 ) ) |
| 20 |
3 4 5 16 2 8 6 9
|
cofuswapf1 |
⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑌 ) = ( 𝑌 ( 1st ‘ 𝐹 ) 𝑋 ) ) |
| 21 |
14 19 20
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) = ( 𝑌 ( 1st ‘ 𝐹 ) 𝑋 ) ) |