| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf1.g |
⊢ ( 𝜑 → 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 2 |
|
tposcurf1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
tposcurf1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
tposcurf1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
tposcurf1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 6 |
|
tposcurf1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 7 |
|
tposcurf1.k |
⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 8 |
|
tposcurf1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 9 |
|
tposcurf11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
tposcurf12.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 11 |
|
tposcurf12.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 12 |
|
tposcurf12.y |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 13 |
|
tposcurf12.g |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑌 𝐽 𝑍 ) ) |
| 14 |
1
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) = ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) |
| 16 |
7 15
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) ) |
| 18 |
17
|
oveqd |
⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) = ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) 𝑍 ) ) |
| 19 |
18
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) 𝑍 ) ‘ 𝐻 ) ) |
| 20 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 21 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 22 |
3 4 5 21
|
cofuswapfcl |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 23 |
|
eqid |
⊢ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) |
| 24 |
20 2 3 4 22 8 6 23 9 10 11 12 13
|
curf12 |
⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) 𝑍 ) ‘ 𝐻 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑍 〉 ) 𝐻 ) ) |
| 25 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 26 |
2 25 11 3 6
|
catidcl |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 27 |
3 4 5 21 2 8 6 9 6 12 25 10 26 13
|
cofuswapf2 |
⊢ ( 𝜑 → ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑍 〉 ) 𝐻 ) = ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑍 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) |
| 28 |
19 24 27
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑍 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) |