Metamath Proof Explorer


Theorem tposcurf12

Description: The partially evaluated transposed curry functor at a morphism. (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Hypotheses tposcurf1.g ( 𝜑𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) )
tposcurf1.a 𝐴 = ( Base ‘ 𝐶 )
tposcurf1.c ( 𝜑𝐶 ∈ Cat )
tposcurf1.d ( 𝜑𝐷 ∈ Cat )
tposcurf1.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
tposcurf1.x ( 𝜑𝑋𝐴 )
tposcurf1.k ( 𝜑𝐾 = ( ( 1st𝐺 ) ‘ 𝑋 ) )
tposcurf1.b 𝐵 = ( Base ‘ 𝐷 )
tposcurf11.y ( 𝜑𝑌𝐵 )
tposcurf12.j 𝐽 = ( Hom ‘ 𝐷 )
tposcurf12.1 1 = ( Id ‘ 𝐶 )
tposcurf12.y ( 𝜑𝑍𝐵 )
tposcurf12.g ( 𝜑𝐻 ∈ ( 𝑌 𝐽 𝑍 ) )
Assertion tposcurf12 ( 𝜑 → ( ( 𝑌 ( 2nd𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( 𝐻 ( ⟨ 𝑌 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑍 , 𝑋 ⟩ ) ( 1𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 tposcurf1.g ( 𝜑𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) )
2 tposcurf1.a 𝐴 = ( Base ‘ 𝐶 )
3 tposcurf1.c ( 𝜑𝐶 ∈ Cat )
4 tposcurf1.d ( 𝜑𝐷 ∈ Cat )
5 tposcurf1.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
6 tposcurf1.x ( 𝜑𝑋𝐴 )
7 tposcurf1.k ( 𝜑𝐾 = ( ( 1st𝐺 ) ‘ 𝑋 ) )
8 tposcurf1.b 𝐵 = ( Base ‘ 𝐷 )
9 tposcurf11.y ( 𝜑𝑌𝐵 )
10 tposcurf12.j 𝐽 = ( Hom ‘ 𝐷 )
11 tposcurf12.1 1 = ( Id ‘ 𝐶 )
12 tposcurf12.y ( 𝜑𝑍𝐵 )
13 tposcurf12.g ( 𝜑𝐻 ∈ ( 𝑌 𝐽 𝑍 ) )
14 1 fveq2d ( 𝜑 → ( 1st𝐺 ) = ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) )
15 14 fveq1d ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑋 ) = ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) )
16 7 15 eqtrd ( 𝜑𝐾 = ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) )
17 16 fveq2d ( 𝜑 → ( 2nd𝐾 ) = ( 2nd ‘ ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) )
18 17 oveqd ( 𝜑 → ( 𝑌 ( 2nd𝐾 ) 𝑍 ) = ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) 𝑍 ) )
19 18 fveq1d ( 𝜑 → ( ( 𝑌 ( 2nd𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) 𝑍 ) ‘ 𝐻 ) )
20 eqid ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
21 eqidd ( 𝜑 → ( 𝐹func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
22 3 4 5 21 cofuswapfcl ( 𝜑 → ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )
23 eqid ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 )
24 20 2 3 4 22 8 6 23 9 10 11 12 13 curf12 ( 𝜑 → ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) 𝑍 ) ‘ 𝐻 ) = ( ( 1𝑋 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd ‘ ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ⟨ 𝑋 , 𝑍 ⟩ ) 𝐻 ) )
25 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
26 2 25 11 3 6 catidcl ( 𝜑 → ( 1𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) )
27 3 4 5 21 2 8 6 9 6 12 25 10 26 13 cofuswapf2 ( 𝜑 → ( ( 1𝑋 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd ‘ ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ⟨ 𝑋 , 𝑍 ⟩ ) 𝐻 ) = ( 𝐻 ( ⟨ 𝑌 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑍 , 𝑋 ⟩ ) ( 1𝑋 ) ) )
28 19 24 27 3eqtrd ( 𝜑 → ( ( 𝑌 ( 2nd𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( 𝐻 ( ⟨ 𝑌 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑍 , 𝑋 ⟩ ) ( 1𝑋 ) ) )