| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf1.g |
⊢ ( 𝜑 → 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 2 |
|
tposcurf1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
tposcurf1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
tposcurf1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
tposcurf1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 6 |
|
tposcurf1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 7 |
|
tposcurf1.k |
⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 8 |
|
tposcurf1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 9 |
|
tposcurf1.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 10 |
|
tposcurf1.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 11 |
1
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) = ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ) |
| 12 |
11
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) ) |
| 13 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 15 |
3 4 5 14
|
cofuswapfcl |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 16 |
|
eqid |
⊢ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) |
| 17 |
13 2 3 4 15 8 6 16 9 10
|
curf1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ‘ 𝑋 ) = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 18 |
7 12 17
|
3eqtrd |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 19 |
8
|
fvexi |
⊢ 𝐵 ∈ V |
| 20 |
19
|
mptex |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) ∈ V |
| 21 |
19 19
|
mpoex |
⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ∈ V |
| 22 |
20 21
|
op1std |
⊢ ( 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 → ( 1st ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) ) |
| 23 |
18 22
|
syl |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) ) |
| 24 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ∈ V ) |
| 25 |
23 24
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) |
| 26 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 33 |
26 2 27 28 29 30 31 8 32
|
tposcurf11 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = ( 𝑦 ( 1st ‘ 𝐹 ) 𝑋 ) ) |
| 34 |
25 33
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) = ( 𝑦 ( 1st ‘ 𝐹 ) 𝑋 ) ) |
| 35 |
34
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( 1st ‘ 𝐹 ) 𝑋 ) ) ) |
| 36 |
20 21
|
op2ndd |
⊢ ( 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 37 |
18 36
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 38 |
|
ovex |
⊢ ( 𝑦 𝐽 𝑧 ) ∈ V |
| 39 |
38
|
mptex |
⊢ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ∈ V ) |
| 41 |
37 40
|
ovmpt4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) = ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) |
| 42 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ∈ V ) |
| 43 |
41 42
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑔 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) |
| 44 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 45 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐶 ∈ Cat ) |
| 46 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐷 ∈ Cat ) |
| 47 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 48 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑋 ∈ 𝐴 ) |
| 49 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 50 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑦 ∈ 𝐵 ) |
| 51 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑧 ∈ 𝐵 ) |
| 52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) |
| 53 |
44 2 45 46 47 48 49 8 50 9 10 51 52
|
tposcurf12 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑔 ) = ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) |
| 54 |
43 53
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) = ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) |
| 55 |
54
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) ) |
| 56 |
55
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) ) |
| 57 |
56
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) ) ) |
| 58 |
35 57
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( 1st ‘ 𝐹 ) 𝑋 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) ) 〉 ) |
| 59 |
18 58
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( 1st ‘ 𝐹 ) 𝑋 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 𝑔 ( 〈 𝑦 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑋 〉 ) ( 1 ‘ 𝑋 ) ) ) ) 〉 ) |