| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf2.g |
⊢ ( 𝜑 → 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 2 |
|
tposcurf2.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
tposcurf2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
tposcurf2.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
tposcurf2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 6 |
|
tposcurf2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 7 |
|
tposcurf2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 8 |
|
tposcurf2.i |
⊢ 𝐼 = ( Id ‘ 𝐷 ) |
| 9 |
|
tposcurf2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 10 |
|
tposcurf2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 11 |
|
tposcurf2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 12 |
|
tposcurf2.l |
⊢ ( 𝜑 → 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) ) |
| 13 |
1
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) = ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) ) |
| 14 |
13
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) = ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) ) |
| 16 |
12 15
|
eqtrd |
⊢ ( 𝜑 → 𝐿 = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) ) |
| 17 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 18 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 19 |
3 4 5 18
|
cofuswapfcl |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 20 |
|
eqid |
⊢ ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) |
| 21 |
17 2 3 4 19 6 7 8 9 10 11 20
|
curf2 |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 25 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 26 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 28 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
| 29 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 31 |
6 29 8 23 27
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 32 |
22 23 24 25 2 6 26 27 28 27 7 29 30 31
|
cofuswapf2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) = ( ( 𝐼 ‘ 𝑧 ) ( 〈 𝑧 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑌 〉 ) 𝐾 ) ) |
| 33 |
32
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐵 ↦ ( ( 𝐼 ‘ 𝑧 ) ( 〈 𝑧 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑌 〉 ) 𝐾 ) ) ) |
| 34 |
16 21 33
|
3eqtrd |
⊢ ( 𝜑 → 𝐿 = ( 𝑧 ∈ 𝐵 ↦ ( ( 𝐼 ‘ 𝑧 ) ( 〈 𝑧 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑌 〉 ) 𝐾 ) ) ) |