Metamath Proof Explorer


Theorem tposcurf2

Description: Value of the transposed curry functor at a morphism. (Contributed by Zhi Wang, 10-Oct-2025)

Ref Expression
Hypotheses tposcurf2.g ( 𝜑𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) )
tposcurf2.a 𝐴 = ( Base ‘ 𝐶 )
tposcurf2.c ( 𝜑𝐶 ∈ Cat )
tposcurf2.d ( 𝜑𝐷 ∈ Cat )
tposcurf2.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
tposcurf2.b 𝐵 = ( Base ‘ 𝐷 )
tposcurf2.h 𝐻 = ( Hom ‘ 𝐶 )
tposcurf2.i 𝐼 = ( Id ‘ 𝐷 )
tposcurf2.x ( 𝜑𝑋𝐴 )
tposcurf2.y ( 𝜑𝑌𝐴 )
tposcurf2.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
tposcurf2.l ( 𝜑𝐿 = ( ( 𝑋 ( 2nd𝐺 ) 𝑌 ) ‘ 𝐾 ) )
Assertion tposcurf2 ( 𝜑𝐿 = ( 𝑧𝐵 ↦ ( ( 𝐼𝑧 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑧 , 𝑌 ⟩ ) 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 tposcurf2.g ( 𝜑𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) )
2 tposcurf2.a 𝐴 = ( Base ‘ 𝐶 )
3 tposcurf2.c ( 𝜑𝐶 ∈ Cat )
4 tposcurf2.d ( 𝜑𝐷 ∈ Cat )
5 tposcurf2.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
6 tposcurf2.b 𝐵 = ( Base ‘ 𝐷 )
7 tposcurf2.h 𝐻 = ( Hom ‘ 𝐶 )
8 tposcurf2.i 𝐼 = ( Id ‘ 𝐷 )
9 tposcurf2.x ( 𝜑𝑋𝐴 )
10 tposcurf2.y ( 𝜑𝑌𝐴 )
11 tposcurf2.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
12 tposcurf2.l ( 𝜑𝐿 = ( ( 𝑋 ( 2nd𝐺 ) 𝑌 ) ‘ 𝐾 ) )
13 1 fveq2d ( 𝜑 → ( 2nd𝐺 ) = ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) )
14 13 oveqd ( 𝜑 → ( 𝑋 ( 2nd𝐺 ) 𝑌 ) = ( 𝑋 ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) )
15 14 fveq1d ( 𝜑 → ( ( 𝑋 ( 2nd𝐺 ) 𝑌 ) ‘ 𝐾 ) = ( ( 𝑋 ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) )
16 12 15 eqtrd ( 𝜑𝐿 = ( ( 𝑋 ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) )
17 eqid ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
18 eqidd ( 𝜑 → ( 𝐹func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
19 3 4 5 18 cofuswapfcl ( 𝜑 → ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )
20 eqid ( ( 𝑋 ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) = ( ( 𝑋 ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 )
21 17 2 3 4 19 6 7 8 9 10 11 20 curf2 ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ) 𝑌 ) ‘ 𝐾 ) = ( 𝑧𝐵 ↦ ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd ‘ ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ) )
22 3 adantr ( ( 𝜑𝑧𝐵 ) → 𝐶 ∈ Cat )
23 4 adantr ( ( 𝜑𝑧𝐵 ) → 𝐷 ∈ Cat )
24 5 adantr ( ( 𝜑𝑧𝐵 ) → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
25 eqidd ( ( 𝜑𝑧𝐵 ) → ( 𝐹func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
26 9 adantr ( ( 𝜑𝑧𝐵 ) → 𝑋𝐴 )
27 simpr ( ( 𝜑𝑧𝐵 ) → 𝑧𝐵 )
28 10 adantr ( ( 𝜑𝑧𝐵 ) → 𝑌𝐴 )
29 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
30 11 adantr ( ( 𝜑𝑧𝐵 ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
31 6 29 8 23 27 catidcl ( ( 𝜑𝑧𝐵 ) → ( 𝐼𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) )
32 22 23 24 25 2 6 26 27 28 27 7 29 30 31 cofuswapf2 ( ( 𝜑𝑧𝐵 ) → ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd ‘ ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) = ( ( 𝐼𝑧 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑧 , 𝑌 ⟩ ) 𝐾 ) )
33 32 mpteq2dva ( 𝜑 → ( 𝑧𝐵 ↦ ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd ‘ ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ) = ( 𝑧𝐵 ↦ ( ( 𝐼𝑧 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑧 , 𝑌 ⟩ ) 𝐾 ) ) )
34 16 21 33 3eqtrd ( 𝜑𝐿 = ( 𝑧𝐵 ↦ ( ( 𝐼𝑧 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑧 , 𝑌 ⟩ ) 𝐾 ) ) )