Metamath Proof Explorer


Theorem tposcurf2val

Description: Value of a component of the transposed curry functor natural transformation. (Contributed by Zhi Wang, 10-Oct-2025)

Ref Expression
Hypotheses tposcurf2.g ( 𝜑𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) )
tposcurf2.a 𝐴 = ( Base ‘ 𝐶 )
tposcurf2.c ( 𝜑𝐶 ∈ Cat )
tposcurf2.d ( 𝜑𝐷 ∈ Cat )
tposcurf2.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
tposcurf2.b 𝐵 = ( Base ‘ 𝐷 )
tposcurf2.h 𝐻 = ( Hom ‘ 𝐶 )
tposcurf2.i 𝐼 = ( Id ‘ 𝐷 )
tposcurf2.x ( 𝜑𝑋𝐴 )
tposcurf2.y ( 𝜑𝑌𝐴 )
tposcurf2.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
tposcurf2.l ( 𝜑𝐿 = ( ( 𝑋 ( 2nd𝐺 ) 𝑌 ) ‘ 𝐾 ) )
tposcurf2.z ( 𝜑𝑍𝐵 )
Assertion tposcurf2val ( 𝜑 → ( 𝐿𝑍 ) = ( ( 𝐼𝑍 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑍 , 𝑌 ⟩ ) 𝐾 ) )

Proof

Step Hyp Ref Expression
1 tposcurf2.g ( 𝜑𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) )
2 tposcurf2.a 𝐴 = ( Base ‘ 𝐶 )
3 tposcurf2.c ( 𝜑𝐶 ∈ Cat )
4 tposcurf2.d ( 𝜑𝐷 ∈ Cat )
5 tposcurf2.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
6 tposcurf2.b 𝐵 = ( Base ‘ 𝐷 )
7 tposcurf2.h 𝐻 = ( Hom ‘ 𝐶 )
8 tposcurf2.i 𝐼 = ( Id ‘ 𝐷 )
9 tposcurf2.x ( 𝜑𝑋𝐴 )
10 tposcurf2.y ( 𝜑𝑌𝐴 )
11 tposcurf2.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
12 tposcurf2.l ( 𝜑𝐿 = ( ( 𝑋 ( 2nd𝐺 ) 𝑌 ) ‘ 𝐾 ) )
13 tposcurf2.z ( 𝜑𝑍𝐵 )
14 1 2 3 4 5 6 7 8 9 10 11 12 tposcurf2 ( 𝜑𝐿 = ( 𝑧𝐵 ↦ ( ( 𝐼𝑧 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑧 , 𝑌 ⟩ ) 𝐾 ) ) )
15 simpr ( ( 𝜑𝑧 = 𝑍 ) → 𝑧 = 𝑍 )
16 15 opeq1d ( ( 𝜑𝑧 = 𝑍 ) → ⟨ 𝑧 , 𝑋 ⟩ = ⟨ 𝑍 , 𝑋 ⟩ )
17 15 opeq1d ( ( 𝜑𝑧 = 𝑍 ) → ⟨ 𝑧 , 𝑌 ⟩ = ⟨ 𝑍 , 𝑌 ⟩ )
18 16 17 oveq12d ( ( 𝜑𝑧 = 𝑍 ) → ( ⟨ 𝑧 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑧 , 𝑌 ⟩ ) = ( ⟨ 𝑍 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑍 , 𝑌 ⟩ ) )
19 15 fveq2d ( ( 𝜑𝑧 = 𝑍 ) → ( 𝐼𝑧 ) = ( 𝐼𝑍 ) )
20 eqidd ( ( 𝜑𝑧 = 𝑍 ) → 𝐾 = 𝐾 )
21 18 19 20 oveq123d ( ( 𝜑𝑧 = 𝑍 ) → ( ( 𝐼𝑧 ) ( ⟨ 𝑧 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑧 , 𝑌 ⟩ ) 𝐾 ) = ( ( 𝐼𝑍 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑍 , 𝑌 ⟩ ) 𝐾 ) )
22 ovexd ( 𝜑 → ( ( 𝐼𝑍 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑍 , 𝑌 ⟩ ) 𝐾 ) ∈ V )
23 14 21 13 22 fvmptd ( 𝜑 → ( 𝐿𝑍 ) = ( ( 𝐼𝑍 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( 2nd𝐹 ) ⟨ 𝑍 , 𝑌 ⟩ ) 𝐾 ) )