Metamath Proof Explorer


Theorem tposcurf2val

Description: Value of a component of the transposed curry functor natural transformation. (Contributed by Zhi Wang, 10-Oct-2025)

Ref Expression
Hypotheses tposcurf2.g No typesetting found for |- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) with typecode |-
tposcurf2.a A = Base C
tposcurf2.c φ C Cat
tposcurf2.d φ D Cat
tposcurf2.f φ F D × c C Func E
tposcurf2.b B = Base D
tposcurf2.h H = Hom C
tposcurf2.i I = Id D
tposcurf2.x φ X A
tposcurf2.y φ Y A
tposcurf2.k φ K X H Y
tposcurf2.l φ L = X 2 nd G Y K
tposcurf2.z φ Z B
Assertion tposcurf2val φ L Z = I Z Z X 2 nd F Z Y K

Proof

Step Hyp Ref Expression
1 tposcurf2.g Could not format ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) : No typesetting found for |- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) with typecode |-
2 tposcurf2.a A = Base C
3 tposcurf2.c φ C Cat
4 tposcurf2.d φ D Cat
5 tposcurf2.f φ F D × c C Func E
6 tposcurf2.b B = Base D
7 tposcurf2.h H = Hom C
8 tposcurf2.i I = Id D
9 tposcurf2.x φ X A
10 tposcurf2.y φ Y A
11 tposcurf2.k φ K X H Y
12 tposcurf2.l φ L = X 2 nd G Y K
13 tposcurf2.z φ Z B
14 1 2 3 4 5 6 7 8 9 10 11 12 tposcurf2 φ L = z B I z z X 2 nd F z Y K
15 simpr φ z = Z z = Z
16 15 opeq1d φ z = Z z X = Z X
17 15 opeq1d φ z = Z z Y = Z Y
18 16 17 oveq12d φ z = Z z X 2 nd F z Y = Z X 2 nd F Z Y
19 15 fveq2d φ z = Z I z = I Z
20 eqidd φ z = Z K = K
21 18 19 20 oveq123d φ z = Z I z z X 2 nd F z Y K = I Z Z X 2 nd F Z Y K
22 ovexd φ I Z Z X 2 nd F Z Y K V
23 14 21 13 22 fvmptd φ L Z = I Z Z X 2 nd F Z Y K