Metamath Proof Explorer


Theorem tposcurf2val

Description: Value of a component of the transposed curry functor natural transformation. (Contributed by Zhi Wang, 10-Oct-2025)

Ref Expression
Hypotheses tposcurf2.g
|- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) )
tposcurf2.a
|- A = ( Base ` C )
tposcurf2.c
|- ( ph -> C e. Cat )
tposcurf2.d
|- ( ph -> D e. Cat )
tposcurf2.f
|- ( ph -> F e. ( ( D Xc. C ) Func E ) )
tposcurf2.b
|- B = ( Base ` D )
tposcurf2.h
|- H = ( Hom ` C )
tposcurf2.i
|- I = ( Id ` D )
tposcurf2.x
|- ( ph -> X e. A )
tposcurf2.y
|- ( ph -> Y e. A )
tposcurf2.k
|- ( ph -> K e. ( X H Y ) )
tposcurf2.l
|- ( ph -> L = ( ( X ( 2nd ` G ) Y ) ` K ) )
tposcurf2.z
|- ( ph -> Z e. B )
Assertion tposcurf2val
|- ( ph -> ( L ` Z ) = ( ( I ` Z ) ( <. Z , X >. ( 2nd ` F ) <. Z , Y >. ) K ) )

Proof

Step Hyp Ref Expression
1 tposcurf2.g
 |-  ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) )
2 tposcurf2.a
 |-  A = ( Base ` C )
3 tposcurf2.c
 |-  ( ph -> C e. Cat )
4 tposcurf2.d
 |-  ( ph -> D e. Cat )
5 tposcurf2.f
 |-  ( ph -> F e. ( ( D Xc. C ) Func E ) )
6 tposcurf2.b
 |-  B = ( Base ` D )
7 tposcurf2.h
 |-  H = ( Hom ` C )
8 tposcurf2.i
 |-  I = ( Id ` D )
9 tposcurf2.x
 |-  ( ph -> X e. A )
10 tposcurf2.y
 |-  ( ph -> Y e. A )
11 tposcurf2.k
 |-  ( ph -> K e. ( X H Y ) )
12 tposcurf2.l
 |-  ( ph -> L = ( ( X ( 2nd ` G ) Y ) ` K ) )
13 tposcurf2.z
 |-  ( ph -> Z e. B )
14 1 2 3 4 5 6 7 8 9 10 11 12 tposcurf2
 |-  ( ph -> L = ( z e. B |-> ( ( I ` z ) ( <. z , X >. ( 2nd ` F ) <. z , Y >. ) K ) ) )
15 simpr
 |-  ( ( ph /\ z = Z ) -> z = Z )
16 15 opeq1d
 |-  ( ( ph /\ z = Z ) -> <. z , X >. = <. Z , X >. )
17 15 opeq1d
 |-  ( ( ph /\ z = Z ) -> <. z , Y >. = <. Z , Y >. )
18 16 17 oveq12d
 |-  ( ( ph /\ z = Z ) -> ( <. z , X >. ( 2nd ` F ) <. z , Y >. ) = ( <. Z , X >. ( 2nd ` F ) <. Z , Y >. ) )
19 15 fveq2d
 |-  ( ( ph /\ z = Z ) -> ( I ` z ) = ( I ` Z ) )
20 eqidd
 |-  ( ( ph /\ z = Z ) -> K = K )
21 18 19 20 oveq123d
 |-  ( ( ph /\ z = Z ) -> ( ( I ` z ) ( <. z , X >. ( 2nd ` F ) <. z , Y >. ) K ) = ( ( I ` Z ) ( <. Z , X >. ( 2nd ` F ) <. Z , Y >. ) K ) )
22 ovexd
 |-  ( ph -> ( ( I ` Z ) ( <. Z , X >. ( 2nd ` F ) <. Z , Y >. ) K ) e. _V )
23 14 21 13 22 fvmptd
 |-  ( ph -> ( L ` Z ) = ( ( I ` Z ) ( <. Z , X >. ( 2nd ` F ) <. Z , Y >. ) K ) )