| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf2.g |
|- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) |
| 2 |
|
tposcurf2.a |
|- A = ( Base ` C ) |
| 3 |
|
tposcurf2.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
tposcurf2.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
tposcurf2.f |
|- ( ph -> F e. ( ( D Xc. C ) Func E ) ) |
| 6 |
|
tposcurf2.b |
|- B = ( Base ` D ) |
| 7 |
|
tposcurf2.h |
|- H = ( Hom ` C ) |
| 8 |
|
tposcurf2.i |
|- I = ( Id ` D ) |
| 9 |
|
tposcurf2.x |
|- ( ph -> X e. A ) |
| 10 |
|
tposcurf2.y |
|- ( ph -> Y e. A ) |
| 11 |
|
tposcurf2.k |
|- ( ph -> K e. ( X H Y ) ) |
| 12 |
|
tposcurf2.l |
|- ( ph -> L = ( ( X ( 2nd ` G ) Y ) ` K ) ) |
| 13 |
1
|
fveq2d |
|- ( ph -> ( 2nd ` G ) = ( 2nd ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ) |
| 14 |
13
|
oveqd |
|- ( ph -> ( X ( 2nd ` G ) Y ) = ( X ( 2nd ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) Y ) ) |
| 15 |
14
|
fveq1d |
|- ( ph -> ( ( X ( 2nd ` G ) Y ) ` K ) = ( ( X ( 2nd ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) Y ) ` K ) ) |
| 16 |
12 15
|
eqtrd |
|- ( ph -> L = ( ( X ( 2nd ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) Y ) ` K ) ) |
| 17 |
|
eqid |
|- ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) |
| 18 |
|
eqidd |
|- ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) ) |
| 19 |
3 4 5 18
|
cofuswapfcl |
|- ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) ) |
| 20 |
|
eqid |
|- ( ( X ( 2nd ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) Y ) ` K ) = ( ( X ( 2nd ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) Y ) ` K ) |
| 21 |
17 2 3 4 19 6 7 8 9 10 11 20
|
curf2 |
|- ( ph -> ( ( X ( 2nd ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) Y ) ` K ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Y , z >. ) ( I ` z ) ) ) ) |
| 22 |
3
|
adantr |
|- ( ( ph /\ z e. B ) -> C e. Cat ) |
| 23 |
4
|
adantr |
|- ( ( ph /\ z e. B ) -> D e. Cat ) |
| 24 |
5
|
adantr |
|- ( ( ph /\ z e. B ) -> F e. ( ( D Xc. C ) Func E ) ) |
| 25 |
|
eqidd |
|- ( ( ph /\ z e. B ) -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) ) |
| 26 |
9
|
adantr |
|- ( ( ph /\ z e. B ) -> X e. A ) |
| 27 |
|
simpr |
|- ( ( ph /\ z e. B ) -> z e. B ) |
| 28 |
10
|
adantr |
|- ( ( ph /\ z e. B ) -> Y e. A ) |
| 29 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 30 |
11
|
adantr |
|- ( ( ph /\ z e. B ) -> K e. ( X H Y ) ) |
| 31 |
6 29 8 23 27
|
catidcl |
|- ( ( ph /\ z e. B ) -> ( I ` z ) e. ( z ( Hom ` D ) z ) ) |
| 32 |
22 23 24 25 2 6 26 27 28 27 7 29 30 31
|
cofuswapf2 |
|- ( ( ph /\ z e. B ) -> ( K ( <. X , z >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Y , z >. ) ( I ` z ) ) = ( ( I ` z ) ( <. z , X >. ( 2nd ` F ) <. z , Y >. ) K ) ) |
| 33 |
32
|
mpteq2dva |
|- ( ph -> ( z e. B |-> ( K ( <. X , z >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Y , z >. ) ( I ` z ) ) ) = ( z e. B |-> ( ( I ` z ) ( <. z , X >. ( 2nd ` F ) <. z , Y >. ) K ) ) ) |
| 34 |
16 21 33
|
3eqtrd |
|- ( ph -> L = ( z e. B |-> ( ( I ` z ) ( <. z , X >. ( 2nd ` F ) <. z , Y >. ) K ) ) ) |