| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmpt4d.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ) |
| 2 |
|
ovmpt4d.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) |
| 3 |
1
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑦 ) ) |
| 4 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
| 5 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 7 |
6
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑦 ) = 𝐶 ) |
| 8 |
4 5 2 7
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑦 ) = 𝐶 ) |
| 9 |
3 8
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |