Metamath Proof Explorer


Theorem ovmpt4d

Description: Deduction version of ovmpt4g . (This is the operation analogue of fvmpt2d .) (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Hypotheses ovmpt4d.1 ( 𝜑𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 ) )
ovmpt4d.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶𝑉 )
Assertion ovmpt4d ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 ovmpt4d.1 ( 𝜑𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 ) )
2 ovmpt4d.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶𝑉 )
3 1 oveqdr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝑥𝐴 , 𝑦𝐵𝐶 ) 𝑦 ) )
4 simprl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑥𝐴 )
5 simprr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑦𝐵 )
6 eqid ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
7 6 ovmpt4g ( ( 𝑥𝐴𝑦𝐵𝐶𝑉 ) → ( 𝑥 ( 𝑥𝐴 , 𝑦𝐵𝐶 ) 𝑦 ) = 𝐶 )
8 4 5 2 7 syl3anc ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥 ( 𝑥𝐴 , 𝑦𝐵𝐶 ) 𝑦 ) = 𝐶 )
9 3 8 eqtrd ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 )