Metamath Proof Explorer


Theorem eqfnovd

Description: Deduction for equality of operations. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses eqfnovd.1 ( 𝜑𝐹 Fn ( 𝐴 × 𝐵 ) )
eqfnovd.2 ( 𝜑𝐺 Fn ( 𝐴 × 𝐵 ) )
eqfnovd.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) )
Assertion eqfnovd ( 𝜑𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 eqfnovd.1 ( 𝜑𝐹 Fn ( 𝐴 × 𝐵 ) )
2 eqfnovd.2 ( 𝜑𝐺 Fn ( 𝐴 × 𝐵 ) )
3 eqfnovd.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) )
4 3 ralrimivva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) )
5 eqfnov2 ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐺 Fn ( 𝐴 × 𝐵 ) ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) )
6 1 2 5 syl2anc ( 𝜑 → ( 𝐹 = 𝐺 ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) )
7 4 6 mpbird ( 𝜑𝐹 = 𝐺 )