Description: Deduction for equality of operations. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqfnovd.1 | ⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 × 𝐵 ) ) | |
| eqfnovd.2 | ⊢ ( 𝜑 → 𝐺 Fn ( 𝐴 × 𝐵 ) ) | ||
| eqfnovd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | ||
| Assertion | eqfnovd | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnovd.1 | ⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 × 𝐵 ) ) | |
| 2 | eqfnovd.2 | ⊢ ( 𝜑 → 𝐺 Fn ( 𝐴 × 𝐵 ) ) | |
| 3 | eqfnovd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 4 | 3 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 5 | eqfnov2 | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐺 Fn ( 𝐴 × 𝐵 ) ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) ) | |
| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 = 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) ) |
| 7 | 4 6 | mpbird | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |