Metamath Proof Explorer


Theorem eqfnovd

Description: Deduction for equality of operations. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses eqfnovd.1
|- ( ph -> F Fn ( A X. B ) )
eqfnovd.2
|- ( ph -> G Fn ( A X. B ) )
eqfnovd.3
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x F y ) = ( x G y ) )
Assertion eqfnovd
|- ( ph -> F = G )

Proof

Step Hyp Ref Expression
1 eqfnovd.1
 |-  ( ph -> F Fn ( A X. B ) )
2 eqfnovd.2
 |-  ( ph -> G Fn ( A X. B ) )
3 eqfnovd.3
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x F y ) = ( x G y ) )
4 3 ralrimivva
 |-  ( ph -> A. x e. A A. y e. B ( x F y ) = ( x G y ) )
5 eqfnov2
 |-  ( ( F Fn ( A X. B ) /\ G Fn ( A X. B ) ) -> ( F = G <-> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) )
6 1 2 5 syl2anc
 |-  ( ph -> ( F = G <-> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) )
7 4 6 mpbird
 |-  ( ph -> F = G )