Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prcoffunc.r | |- R = ( D FuncCat E ) |
|
| prcoffunc.e | |- ( ph -> E e. Cat ) |
||
| prcoffunc.s | |- S = ( C FuncCat E ) |
||
| prcoffunca.f | |- ( ph -> F e. ( C Func D ) ) |
||
| prcoffunca2.k | |- ( ph -> ( <. D , E >. -o.F F ) = <. K , L >. ) |
||
| Assertion | prcoffunca2 | |- ( ph -> K ( R Func S ) L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcoffunc.r | |- R = ( D FuncCat E ) |
|
| 2 | prcoffunc.e | |- ( ph -> E e. Cat ) |
|
| 3 | prcoffunc.s | |- S = ( C FuncCat E ) |
|
| 4 | prcoffunca.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | prcoffunca2.k | |- ( ph -> ( <. D , E >. -o.F F ) = <. K , L >. ) |
|
| 6 | 1 2 3 4 | prcoffunca | |- ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) ) |
| 7 | 5 6 | eqeltrrd | |- ( ph -> <. K , L >. e. ( R Func S ) ) |
| 8 | df-br | |- ( K ( R Func S ) L <-> <. K , L >. e. ( R Func S ) ) |
|
| 9 | 7 8 | sylibr | |- ( ph -> K ( R Func S ) L ) |