Metamath Proof Explorer


Theorem prcoffunca2

Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r
|- R = ( D FuncCat E )
prcoffunc.e
|- ( ph -> E e. Cat )
prcoffunc.s
|- S = ( C FuncCat E )
prcoffunca.f
|- ( ph -> F e. ( C Func D ) )
prcoffunca2.k
|- ( ph -> ( <. D , E >. -o.F F ) = <. K , L >. )
Assertion prcoffunca2
|- ( ph -> K ( R Func S ) L )

Proof

Step Hyp Ref Expression
1 prcoffunc.r
 |-  R = ( D FuncCat E )
2 prcoffunc.e
 |-  ( ph -> E e. Cat )
3 prcoffunc.s
 |-  S = ( C FuncCat E )
4 prcoffunca.f
 |-  ( ph -> F e. ( C Func D ) )
5 prcoffunca2.k
 |-  ( ph -> ( <. D , E >. -o.F F ) = <. K , L >. )
6 1 2 3 4 prcoffunca
 |-  ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) )
7 5 6 eqeltrrd
 |-  ( ph -> <. K , L >. e. ( R Func S ) )
8 df-br
 |-  ( K ( R Func S ) L <-> <. K , L >. e. ( R Func S ) )
9 7 8 sylibr
 |-  ( ph -> K ( R Func S ) L )