| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcof1.k |
|- ( ph -> K e. ( D Func E ) ) |
| 2 |
|
prcof1.o |
|- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = O ) |
| 3 |
2
|
adantr |
|- ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = O ) |
| 4 |
|
eqid |
|- ( D Func E ) = ( D Func E ) |
| 5 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ F e. _V ) -> K e. ( D Func E ) ) |
| 7 |
6
|
func1st2nd |
|- ( ( ph /\ F e. _V ) -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) ) |
| 8 |
7
|
funcrcl2 |
|- ( ( ph /\ F e. _V ) -> D e. Cat ) |
| 9 |
7
|
funcrcl3 |
|- ( ( ph /\ F e. _V ) -> E e. Cat ) |
| 10 |
|
simpr |
|- ( ( ph /\ F e. _V ) -> F e. _V ) |
| 11 |
4 5 8 9 10
|
prcofvala |
|- ( ( ph /\ F e. _V ) -> ( <. D , E >. -o.F F ) = <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) ) |
| 13 |
|
ovex |
|- ( D Func E ) e. _V |
| 14 |
13
|
mptex |
|- ( k e. ( D Func E ) |-> ( k o.func F ) ) e. _V |
| 15 |
13 13
|
mpoex |
|- ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. ( 1st ` F ) ) ) ) e. _V |
| 16 |
14 15
|
op1st |
|- ( 1st ` <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) = ( k e. ( D Func E ) |-> ( k o.func F ) ) |
| 17 |
12 16
|
eqtrdi |
|- ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( k e. ( D Func E ) |-> ( k o.func F ) ) ) |
| 18 |
3 17
|
eqtr3d |
|- ( ( ph /\ F e. _V ) -> O = ( k e. ( D Func E ) |-> ( k o.func F ) ) ) |
| 19 |
|
simpr |
|- ( ( ( ph /\ F e. _V ) /\ k = K ) -> k = K ) |
| 20 |
19
|
oveq1d |
|- ( ( ( ph /\ F e. _V ) /\ k = K ) -> ( k o.func F ) = ( K o.func F ) ) |
| 21 |
|
ovexd |
|- ( ( ph /\ F e. _V ) -> ( K o.func F ) e. _V ) |
| 22 |
18 20 6 21
|
fvmptd |
|- ( ( ph /\ F e. _V ) -> ( O ` K ) = ( K o.func F ) ) |
| 23 |
|
0fv |
|- ( (/) ` K ) = (/) |
| 24 |
|
reldmprcof |
|- Rel dom -o.F |
| 25 |
24
|
ovprc2 |
|- ( -. F e. _V -> ( <. D , E >. -o.F F ) = (/) ) |
| 26 |
25
|
fveq2d |
|- ( -. F e. _V -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` (/) ) ) |
| 27 |
|
1st0 |
|- ( 1st ` (/) ) = (/) |
| 28 |
26 27
|
eqtrdi |
|- ( -. F e. _V -> ( 1st ` ( <. D , E >. -o.F F ) ) = (/) ) |
| 29 |
2 28
|
sylan9req |
|- ( ( ph /\ -. F e. _V ) -> O = (/) ) |
| 30 |
29
|
fveq1d |
|- ( ( ph /\ -. F e. _V ) -> ( O ` K ) = ( (/) ` K ) ) |
| 31 |
|
df-cofu |
|- o.func = ( l e. _V , k e. _V |-> <. ( ( 1st ` l ) o. ( 1st ` k ) ) , ( a e. dom dom ( 2nd ` k ) , b e. dom dom ( 2nd ` k ) |-> ( ( ( ( 1st ` k ) ` a ) ( 2nd ` l ) ( ( 1st ` k ) ` b ) ) o. ( a ( 2nd ` k ) b ) ) ) >. ) |
| 32 |
31
|
reldmmpo |
|- Rel dom o.func |
| 33 |
32
|
ovprc2 |
|- ( -. F e. _V -> ( K o.func F ) = (/) ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ -. F e. _V ) -> ( K o.func F ) = (/) ) |
| 35 |
23 30 34
|
3eqtr4a |
|- ( ( ph /\ -. F e. _V ) -> ( O ` K ) = ( K o.func F ) ) |
| 36 |
22 35
|
pm2.61dan |
|- ( ph -> ( O ` K ) = ( K o.func F ) ) |