Metamath Proof Explorer


Theorem prcof1

Description: The object part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof1.k φ K D Func E
prcof1.o No typesetting found for |- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = O ) with typecode |-
Assertion prcof1 φ O K = K func F

Proof

Step Hyp Ref Expression
1 prcof1.k φ K D Func E
2 prcof1.o Could not format ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = O ) : No typesetting found for |- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = O ) with typecode |-
3 2 adantr Could not format ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = O ) : No typesetting found for |- ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = O ) with typecode |-
4 eqid D Func E = D Func E
5 eqid D Nat E = D Nat E
6 1 adantr φ F V K D Func E
7 6 func1st2nd φ F V 1 st K D Func E 2 nd K
8 7 funcrcl2 φ F V D Cat
9 7 funcrcl3 φ F V E Cat
10 simpr φ F V F V
11 4 5 8 9 10 prcofvala Could not format ( ( ph /\ F e. _V ) -> ( <. D , E >. -o.F F ) = <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) : No typesetting found for |- ( ( ph /\ F e. _V ) -> ( <. D , E >. -o.F F ) = <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-
12 11 fveq2d Could not format ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) ) : No typesetting found for |- ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) ) with typecode |-
13 ovex D Func E V
14 13 mptex k D Func E k func F V
15 13 13 mpoex k D Func E , l D Func E a k D Nat E l a 1 st F V
16 14 15 op1st 1 st k D Func E k func F k D Func E , l D Func E a k D Nat E l a 1 st F = k D Func E k func F
17 12 16 eqtrdi Could not format ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( k e. ( D Func E ) |-> ( k o.func F ) ) ) : No typesetting found for |- ( ( ph /\ F e. _V ) -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( k e. ( D Func E ) |-> ( k o.func F ) ) ) with typecode |-
18 3 17 eqtr3d φ F V O = k D Func E k func F
19 simpr φ F V k = K k = K
20 19 oveq1d φ F V k = K k func F = K func F
21 ovexd φ F V K func F V
22 18 20 6 21 fvmptd φ F V O K = K func F
23 0fv K =
24 reldmprcof Could not format Rel dom -o.F : No typesetting found for |- Rel dom -o.F with typecode |-
25 24 ovprc2 Could not format ( -. F e. _V -> ( <. D , E >. -o.F F ) = (/) ) : No typesetting found for |- ( -. F e. _V -> ( <. D , E >. -o.F F ) = (/) ) with typecode |-
26 25 fveq2d Could not format ( -. F e. _V -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` (/) ) ) : No typesetting found for |- ( -. F e. _V -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` (/) ) ) with typecode |-
27 1st0 1 st =
28 26 27 eqtrdi Could not format ( -. F e. _V -> ( 1st ` ( <. D , E >. -o.F F ) ) = (/) ) : No typesetting found for |- ( -. F e. _V -> ( 1st ` ( <. D , E >. -o.F F ) ) = (/) ) with typecode |-
29 2 28 sylan9req φ ¬ F V O =
30 29 fveq1d φ ¬ F V O K = K
31 df-cofu func = l V , k V 1 st l 1 st k a dom dom 2 nd k , b dom dom 2 nd k 1 st k a 2 nd l 1 st k b a 2 nd k b
32 31 reldmmpo Rel dom func
33 32 ovprc2 ¬ F V K func F =
34 33 adantl φ ¬ F V K func F =
35 23 30 34 3eqtr4a φ ¬ F V O K = K func F
36 22 35 pm2.61dan φ O K = K func F