Metamath Proof Explorer


Theorem prcofvala

Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcofvalg.b B = D Func E
prcofvalg.n N = D Nat E
prcofvala.d φ D V
prcofvala.e φ E W
prcofvala.f φ F U
Assertion prcofvala Could not format assertion : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 prcofvalg.b B = D Func E
2 prcofvalg.n N = D Nat E
3 prcofvala.d φ D V
4 prcofvala.e φ E W
5 prcofvala.f φ F U
6 opex D E V
7 6 a1i φ D E V
8 op1stg D V E W 1 st D E = D
9 3 4 8 syl2anc φ 1 st D E = D
10 op2ndg D V E W 2 nd D E = E
11 3 4 10 syl2anc φ 2 nd D E = E
12 1 2 5 7 9 11 prcofvalg Could not format ( ph -> ( <. D , E >. -o.F F ) = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-