Metamath Proof Explorer


Theorem prcofvala

Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcofvalg.b 𝐵 = ( 𝐷 Func 𝐸 )
prcofvalg.n 𝑁 = ( 𝐷 Nat 𝐸 )
prcofvala.d ( 𝜑𝐷𝑉 )
prcofvala.e ( 𝜑𝐸𝑊 )
prcofvala.f ( 𝜑𝐹𝑈 )
Assertion prcofvala ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ ( 𝑘𝐵 ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 prcofvalg.b 𝐵 = ( 𝐷 Func 𝐸 )
2 prcofvalg.n 𝑁 = ( 𝐷 Nat 𝐸 )
3 prcofvala.d ( 𝜑𝐷𝑉 )
4 prcofvala.e ( 𝜑𝐸𝑊 )
5 prcofvala.f ( 𝜑𝐹𝑈 )
6 opex 𝐷 , 𝐸 ⟩ ∈ V
7 6 a1i ( 𝜑 → ⟨ 𝐷 , 𝐸 ⟩ ∈ V )
8 op1stg ( ( 𝐷𝑉𝐸𝑊 ) → ( 1st ‘ ⟨ 𝐷 , 𝐸 ⟩ ) = 𝐷 )
9 3 4 8 syl2anc ( 𝜑 → ( 1st ‘ ⟨ 𝐷 , 𝐸 ⟩ ) = 𝐷 )
10 op2ndg ( ( 𝐷𝑉𝐸𝑊 ) → ( 2nd ‘ ⟨ 𝐷 , 𝐸 ⟩ ) = 𝐸 )
11 3 4 10 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝐷 , 𝐸 ⟩ ) = 𝐸 )
12 1 2 5 7 9 11 prcofvalg ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ ( 𝑘𝐵 ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ )