| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofvalg.b |
⊢ 𝐵 = ( 𝐷 Func 𝐸 ) |
| 2 |
|
prcofvalg.n |
⊢ 𝑁 = ( 𝐷 Nat 𝐸 ) |
| 3 |
|
prcofvala.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
prcofvala.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
| 5 |
|
prcofvala.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑈 ) |
| 6 |
|
opex |
⊢ 〈 𝐷 , 𝐸 〉 ∈ V |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 〈 𝐷 , 𝐸 〉 ∈ V ) |
| 8 |
|
op1stg |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 1st ‘ 〈 𝐷 , 𝐸 〉 ) = 𝐷 ) |
| 9 |
3 4 8
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐷 , 𝐸 〉 ) = 𝐷 ) |
| 10 |
|
op2ndg |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝐷 , 𝐸 〉 ) = 𝐸 ) |
| 11 |
3 4 10
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐷 , 𝐸 〉 ) = 𝐸 ) |
| 12 |
1 2 5 7 9 11
|
prcofvalg |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 ( 𝑘 ∈ 𝐵 ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ 𝐵 , 𝑙 ∈ 𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) |