| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofvalg.b |
⊢ 𝐵 = ( 𝐷 Func 𝐸 ) |
| 2 |
|
prcofvalg.n |
⊢ 𝑁 = ( 𝐷 Nat 𝐸 ) |
| 3 |
|
prcofvala.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
prcofvala.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
| 5 |
|
prcofval.r |
⊢ Rel 𝑅 |
| 6 |
|
prcofval.f |
⊢ ( 𝜑 → 𝐹 𝑅 𝐺 ) |
| 7 |
|
opex |
⊢ 〈 𝐹 , 𝐺 〉 ∈ V |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ V ) |
| 9 |
1 2 3 4 8
|
prcofvala |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝑘 ∈ 𝐵 ↦ ( 𝑘 ∘func 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑘 ∈ 𝐵 , 𝑙 ∈ 𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) ) ) 〉 ) |
| 10 |
5
|
brrelex12i |
⊢ ( 𝐹 𝑅 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 11 |
|
op1stg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 12 |
6 10 11
|
3syl |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 13 |
12
|
coeq2d |
⊢ ( 𝜑 → ( 𝑎 ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) = ( 𝑎 ∘ 𝐹 ) ) |
| 14 |
13
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) ) = ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ 𝐹 ) ) ) |
| 15 |
14
|
mpoeq3dv |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 , 𝑙 ∈ 𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) ) ) = ( 𝑘 ∈ 𝐵 , 𝑙 ∈ 𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ 𝐹 ) ) ) ) |
| 16 |
15
|
opeq2d |
⊢ ( 𝜑 → 〈 ( 𝑘 ∈ 𝐵 ↦ ( 𝑘 ∘func 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑘 ∈ 𝐵 , 𝑙 ∈ 𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) ) ) 〉 = 〈 ( 𝑘 ∈ 𝐵 ↦ ( 𝑘 ∘func 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑘 ∈ 𝐵 , 𝑙 ∈ 𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ 𝐹 ) ) ) 〉 ) |
| 17 |
9 16
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝑘 ∈ 𝐵 ↦ ( 𝑘 ∘func 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑘 ∈ 𝐵 , 𝑙 ∈ 𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ 𝐹 ) ) ) 〉 ) |