Metamath Proof Explorer


Theorem prcofval

Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcofvalg.b 𝐵 = ( 𝐷 Func 𝐸 )
prcofvalg.n 𝑁 = ( 𝐷 Nat 𝐸 )
prcofvala.d ( 𝜑𝐷𝑉 )
prcofvala.e ( 𝜑𝐸𝑊 )
prcofval.r Rel 𝑅
prcofval.f ( 𝜑𝐹 𝑅 𝐺 )
Assertion prcofval ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝑘𝐵 ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) , ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎𝐹 ) ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 prcofvalg.b 𝐵 = ( 𝐷 Func 𝐸 )
2 prcofvalg.n 𝑁 = ( 𝐷 Nat 𝐸 )
3 prcofvala.d ( 𝜑𝐷𝑉 )
4 prcofvala.e ( 𝜑𝐸𝑊 )
5 prcofval.r Rel 𝑅
6 prcofval.f ( 𝜑𝐹 𝑅 𝐺 )
7 opex 𝐹 , 𝐺 ⟩ ∈ V
8 7 a1i ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ V )
9 1 2 3 4 8 prcofvala ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝑘𝐵 ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) , ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ) ) ) ⟩ )
10 5 brrelex12i ( 𝐹 𝑅 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) )
11 op1stg ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = 𝐹 )
12 6 10 11 3syl ( 𝜑 → ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = 𝐹 )
13 12 coeq2d ( 𝜑 → ( 𝑎 ∘ ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ) = ( 𝑎𝐹 ) )
14 13 mpteq2dv ( 𝜑 → ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ) ) = ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎𝐹 ) ) )
15 14 mpoeq3dv ( 𝜑 → ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ) ) ) = ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎𝐹 ) ) ) )
16 15 opeq2d ( 𝜑 → ⟨ ( 𝑘𝐵 ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) , ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ) ) ) ⟩ = ⟨ ( 𝑘𝐵 ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) , ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎𝐹 ) ) ) ⟩ )
17 9 16 eqtrd ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝑘𝐵 ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) , ( 𝑘𝐵 , 𝑙𝐵 ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎𝐹 ) ) ) ⟩ )