| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofvalg.b |
|- B = ( D Func E ) |
| 2 |
|
prcofvalg.n |
|- N = ( D Nat E ) |
| 3 |
|
prcofvala.d |
|- ( ph -> D e. V ) |
| 4 |
|
prcofvala.e |
|- ( ph -> E e. W ) |
| 5 |
|
prcofval.r |
|- Rel R |
| 6 |
|
prcofval.f |
|- ( ph -> F R G ) |
| 7 |
|
opex |
|- <. F , G >. e. _V |
| 8 |
7
|
a1i |
|- ( ph -> <. F , G >. e. _V ) |
| 9 |
1 2 3 4 8
|
prcofvala |
|- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` <. F , G >. ) ) ) ) >. ) |
| 10 |
5
|
brrelex12i |
|- ( F R G -> ( F e. _V /\ G e. _V ) ) |
| 11 |
|
op1stg |
|- ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) |
| 12 |
6 10 11
|
3syl |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 13 |
12
|
coeq2d |
|- ( ph -> ( a o. ( 1st ` <. F , G >. ) ) = ( a o. F ) ) |
| 14 |
13
|
mpteq2dv |
|- ( ph -> ( a e. ( k N l ) |-> ( a o. ( 1st ` <. F , G >. ) ) ) = ( a e. ( k N l ) |-> ( a o. F ) ) ) |
| 15 |
14
|
mpoeq3dv |
|- ( ph -> ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` <. F , G >. ) ) ) ) = ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) ) |
| 16 |
15
|
opeq2d |
|- ( ph -> <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` <. F , G >. ) ) ) ) >. = <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) |
| 17 |
9 16
|
eqtrd |
|- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) |