| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
prcofpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
prcofpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
prcofpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
prcofpropd.a |
|- ( ph -> A e. V ) |
| 6 |
|
prcofpropd.b |
|- ( ph -> B e. V ) |
| 7 |
|
prcofpropd.c |
|- ( ph -> C e. V ) |
| 8 |
|
prcofpropd.d |
|- ( ph -> D e. V ) |
| 9 |
|
prcofpropd.f |
|- ( ph -> F e. W ) |
| 10 |
1 2 3 4 5 6 7 8
|
funcpropd |
|- ( ph -> ( A Func C ) = ( B Func D ) ) |
| 11 |
10
|
mpteq1d |
|- ( ph -> ( k e. ( A Func C ) |-> ( k o.func F ) ) = ( k e. ( B Func D ) |-> ( k o.func F ) ) ) |
| 12 |
10
|
adantr |
|- ( ( ph /\ k e. ( A Func C ) ) -> ( A Func C ) = ( B Func D ) ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( comf ` A ) = ( comf ` B ) ) |
| 15 |
3
|
adantr |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 17 |
|
funcrcl |
|- ( k e. ( A Func C ) -> ( A e. Cat /\ C e. Cat ) ) |
| 18 |
17
|
ad2antrl |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( A e. Cat /\ C e. Cat ) ) |
| 19 |
18
|
simpld |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> A e. Cat ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> B e. V ) |
| 21 |
13 14 19 20
|
catpropd |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( A e. Cat <-> B e. Cat ) ) |
| 22 |
19 21
|
mpbid |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> B e. Cat ) |
| 23 |
18
|
simprd |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> C e. Cat ) |
| 24 |
8
|
adantr |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> D e. V ) |
| 25 |
15 16 23 24
|
catpropd |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( C e. Cat <-> D e. Cat ) ) |
| 26 |
23 25
|
mpbid |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> D e. Cat ) |
| 27 |
13 14 15 16 19 22 23 26
|
natpropd |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( A Nat C ) = ( B Nat D ) ) |
| 28 |
27
|
oveqd |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( k ( A Nat C ) l ) = ( k ( B Nat D ) l ) ) |
| 29 |
28
|
mpteq1d |
|- ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) = ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) |
| 30 |
10 12 29
|
mpoeq123dva |
|- ( ph -> ( k e. ( A Func C ) , l e. ( A Func C ) |-> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) ) = ( k e. ( B Func D ) , l e. ( B Func D ) |-> ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) ) |
| 31 |
11 30
|
opeq12d |
|- ( ph -> <. ( k e. ( A Func C ) |-> ( k o.func F ) ) , ( k e. ( A Func C ) , l e. ( A Func C ) |-> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. = <. ( k e. ( B Func D ) |-> ( k o.func F ) ) , ( k e. ( B Func D ) , l e. ( B Func D ) |-> ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 32 |
|
eqid |
|- ( A Func C ) = ( A Func C ) |
| 33 |
|
eqid |
|- ( A Nat C ) = ( A Nat C ) |
| 34 |
32 33 5 7 9
|
prcofvala |
|- ( ph -> ( <. A , C >. -o.F F ) = <. ( k e. ( A Func C ) |-> ( k o.func F ) ) , ( k e. ( A Func C ) , l e. ( A Func C ) |-> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 35 |
|
eqid |
|- ( B Func D ) = ( B Func D ) |
| 36 |
|
eqid |
|- ( B Nat D ) = ( B Nat D ) |
| 37 |
35 36 6 8 9
|
prcofvala |
|- ( ph -> ( <. B , D >. -o.F F ) = <. ( k e. ( B Func D ) |-> ( k o.func F ) ) , ( k e. ( B Func D ) , l e. ( B Func D ) |-> ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 38 |
31 34 37
|
3eqtr4d |
|- ( ph -> ( <. A , C >. -o.F F ) = ( <. B , D >. -o.F F ) ) |