Metamath Proof Explorer


Theorem prcofpropd

Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025)

Ref Expression
Hypotheses prcofpropd.1
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) )
prcofpropd.2
|- ( ph -> ( comf ` A ) = ( comf ` B ) )
prcofpropd.3
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) )
prcofpropd.4
|- ( ph -> ( comf ` C ) = ( comf ` D ) )
prcofpropd.a
|- ( ph -> A e. V )
prcofpropd.b
|- ( ph -> B e. V )
prcofpropd.c
|- ( ph -> C e. V )
prcofpropd.d
|- ( ph -> D e. V )
prcofpropd.f
|- ( ph -> F e. W )
Assertion prcofpropd
|- ( ph -> ( <. A , C >. -o.F F ) = ( <. B , D >. -o.F F ) )

Proof

Step Hyp Ref Expression
1 prcofpropd.1
 |-  ( ph -> ( Homf ` A ) = ( Homf ` B ) )
2 prcofpropd.2
 |-  ( ph -> ( comf ` A ) = ( comf ` B ) )
3 prcofpropd.3
 |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) )
4 prcofpropd.4
 |-  ( ph -> ( comf ` C ) = ( comf ` D ) )
5 prcofpropd.a
 |-  ( ph -> A e. V )
6 prcofpropd.b
 |-  ( ph -> B e. V )
7 prcofpropd.c
 |-  ( ph -> C e. V )
8 prcofpropd.d
 |-  ( ph -> D e. V )
9 prcofpropd.f
 |-  ( ph -> F e. W )
10 1 2 3 4 5 6 7 8 funcpropd
 |-  ( ph -> ( A Func C ) = ( B Func D ) )
11 10 mpteq1d
 |-  ( ph -> ( k e. ( A Func C ) |-> ( k o.func F ) ) = ( k e. ( B Func D ) |-> ( k o.func F ) ) )
12 10 adantr
 |-  ( ( ph /\ k e. ( A Func C ) ) -> ( A Func C ) = ( B Func D ) )
13 1 adantr
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( Homf ` A ) = ( Homf ` B ) )
14 2 adantr
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( comf ` A ) = ( comf ` B ) )
15 3 adantr
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( Homf ` C ) = ( Homf ` D ) )
16 4 adantr
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( comf ` C ) = ( comf ` D ) )
17 funcrcl
 |-  ( k e. ( A Func C ) -> ( A e. Cat /\ C e. Cat ) )
18 17 ad2antrl
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( A e. Cat /\ C e. Cat ) )
19 18 simpld
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> A e. Cat )
20 6 adantr
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> B e. V )
21 13 14 19 20 catpropd
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( A e. Cat <-> B e. Cat ) )
22 19 21 mpbid
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> B e. Cat )
23 18 simprd
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> C e. Cat )
24 8 adantr
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> D e. V )
25 15 16 23 24 catpropd
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( C e. Cat <-> D e. Cat ) )
26 23 25 mpbid
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> D e. Cat )
27 13 14 15 16 19 22 23 26 natpropd
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( A Nat C ) = ( B Nat D ) )
28 27 oveqd
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( k ( A Nat C ) l ) = ( k ( B Nat D ) l ) )
29 28 mpteq1d
 |-  ( ( ph /\ ( k e. ( A Func C ) /\ l e. ( A Func C ) ) ) -> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) = ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) )
30 10 12 29 mpoeq123dva
 |-  ( ph -> ( k e. ( A Func C ) , l e. ( A Func C ) |-> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) ) = ( k e. ( B Func D ) , l e. ( B Func D ) |-> ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) )
31 11 30 opeq12d
 |-  ( ph -> <. ( k e. ( A Func C ) |-> ( k o.func F ) ) , ( k e. ( A Func C ) , l e. ( A Func C ) |-> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. = <. ( k e. ( B Func D ) |-> ( k o.func F ) ) , ( k e. ( B Func D ) , l e. ( B Func D ) |-> ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. )
32 eqid
 |-  ( A Func C ) = ( A Func C )
33 eqid
 |-  ( A Nat C ) = ( A Nat C )
34 32 33 5 7 9 prcofvala
 |-  ( ph -> ( <. A , C >. -o.F F ) = <. ( k e. ( A Func C ) |-> ( k o.func F ) ) , ( k e. ( A Func C ) , l e. ( A Func C ) |-> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. )
35 eqid
 |-  ( B Func D ) = ( B Func D )
36 eqid
 |-  ( B Nat D ) = ( B Nat D )
37 35 36 6 8 9 prcofvala
 |-  ( ph -> ( <. B , D >. -o.F F ) = <. ( k e. ( B Func D ) |-> ( k o.func F ) ) , ( k e. ( B Func D ) , l e. ( B Func D ) |-> ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. )
38 31 34 37 3eqtr4d
 |-  ( ph -> ( <. A , C >. -o.F F ) = ( <. B , D >. -o.F F ) )