Metamath Proof Explorer


Theorem prcofpropd

Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025)

Ref Expression
Hypotheses prcofpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
prcofpropd.2 φ comp 𝑓 A = comp 𝑓 B
prcofpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
prcofpropd.4 φ comp 𝑓 C = comp 𝑓 D
prcofpropd.a φ A V
prcofpropd.b φ B V
prcofpropd.c φ C V
prcofpropd.d φ D V
prcofpropd.f φ F W
Assertion prcofpropd Could not format assertion : No typesetting found for |- ( ph -> ( <. A , C >. -o.F F ) = ( <. B , D >. -o.F F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 prcofpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
2 prcofpropd.2 φ comp 𝑓 A = comp 𝑓 B
3 prcofpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
4 prcofpropd.4 φ comp 𝑓 C = comp 𝑓 D
5 prcofpropd.a φ A V
6 prcofpropd.b φ B V
7 prcofpropd.c φ C V
8 prcofpropd.d φ D V
9 prcofpropd.f φ F W
10 1 2 3 4 5 6 7 8 funcpropd φ A Func C = B Func D
11 10 mpteq1d φ k A Func C k func F = k B Func D k func F
12 10 adantr φ k A Func C A Func C = B Func D
13 1 adantr φ k A Func C l A Func C Hom 𝑓 A = Hom 𝑓 B
14 2 adantr φ k A Func C l A Func C comp 𝑓 A = comp 𝑓 B
15 3 adantr φ k A Func C l A Func C Hom 𝑓 C = Hom 𝑓 D
16 4 adantr φ k A Func C l A Func C comp 𝑓 C = comp 𝑓 D
17 funcrcl k A Func C A Cat C Cat
18 17 ad2antrl φ k A Func C l A Func C A Cat C Cat
19 18 simpld φ k A Func C l A Func C A Cat
20 6 adantr φ k A Func C l A Func C B V
21 13 14 19 20 catpropd φ k A Func C l A Func C A Cat B Cat
22 19 21 mpbid φ k A Func C l A Func C B Cat
23 18 simprd φ k A Func C l A Func C C Cat
24 8 adantr φ k A Func C l A Func C D V
25 15 16 23 24 catpropd φ k A Func C l A Func C C Cat D Cat
26 23 25 mpbid φ k A Func C l A Func C D Cat
27 13 14 15 16 19 22 23 26 natpropd φ k A Func C l A Func C A Nat C = B Nat D
28 27 oveqd φ k A Func C l A Func C k A Nat C l = k B Nat D l
29 28 mpteq1d φ k A Func C l A Func C a k A Nat C l a 1 st F = a k B Nat D l a 1 st F
30 10 12 29 mpoeq123dva φ k A Func C , l A Func C a k A Nat C l a 1 st F = k B Func D , l B Func D a k B Nat D l a 1 st F
31 11 30 opeq12d φ k A Func C k func F k A Func C , l A Func C a k A Nat C l a 1 st F = k B Func D k func F k B Func D , l B Func D a k B Nat D l a 1 st F
32 eqid A Func C = A Func C
33 eqid A Nat C = A Nat C
34 32 33 5 7 9 prcofvala Could not format ( ph -> ( <. A , C >. -o.F F ) = <. ( k e. ( A Func C ) |-> ( k o.func F ) ) , ( k e. ( A Func C ) , l e. ( A Func C ) |-> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. A , C >. -o.F F ) = <. ( k e. ( A Func C ) |-> ( k o.func F ) ) , ( k e. ( A Func C ) , l e. ( A Func C ) |-> ( a e. ( k ( A Nat C ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-
35 eqid B Func D = B Func D
36 eqid B Nat D = B Nat D
37 35 36 6 8 9 prcofvala Could not format ( ph -> ( <. B , D >. -o.F F ) = <. ( k e. ( B Func D ) |-> ( k o.func F ) ) , ( k e. ( B Func D ) , l e. ( B Func D ) |-> ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. B , D >. -o.F F ) = <. ( k e. ( B Func D ) |-> ( k o.func F ) ) , ( k e. ( B Func D ) , l e. ( B Func D ) |-> ( a e. ( k ( B Nat D ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-
38 31 34 37 3eqtr4d Could not format ( ph -> ( <. A , C >. -o.F F ) = ( <. B , D >. -o.F F ) ) : No typesetting found for |- ( ph -> ( <. A , C >. -o.F F ) = ( <. B , D >. -o.F F ) ) with typecode |-