| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 2 |
|
prcofpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 3 |
|
prcofpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 |
|
prcofpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 |
|
prcofpropd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
prcofpropd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 7 |
|
prcofpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 8 |
|
prcofpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 9 |
|
prcofpropd.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
| 10 |
1 2 3 4 5 6 7 8
|
funcpropd |
⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 11 |
10
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑘 ∘func 𝐹 ) ) = ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑘 ∘func 𝐹 ) ) ) |
| 12 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 Func 𝐶 ) ) → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 17 |
|
funcrcl |
⊢ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ) |
| 18 |
17
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ) |
| 19 |
18
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐴 ∈ Cat ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐵 ∈ 𝑉 ) |
| 21 |
13 14 19 20
|
catpropd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝐴 ∈ Cat ↔ 𝐵 ∈ Cat ) ) |
| 22 |
19 21
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐵 ∈ Cat ) |
| 23 |
18
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 24 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐷 ∈ 𝑉 ) |
| 25 |
15 16 23 24
|
catpropd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| 26 |
23 25
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐷 ∈ Cat ) |
| 27 |
13 14 15 16 19 22 23 26
|
natpropd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) ) |
| 28 |
27
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) = ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ) |
| 29 |
28
|
mpteq1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝑎 ∈ ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) = ( 𝑎 ∈ ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) |
| 30 |
10 12 29
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) , 𝑙 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) = ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) , 𝑙 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) ) |
| 31 |
11 30
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) , 𝑙 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 = 〈 ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) , 𝑙 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) |
| 32 |
|
eqid |
⊢ ( 𝐴 Func 𝐶 ) = ( 𝐴 Func 𝐶 ) |
| 33 |
|
eqid |
⊢ ( 𝐴 Nat 𝐶 ) = ( 𝐴 Nat 𝐶 ) |
| 34 |
32 33 5 7 9
|
prcofvala |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐶 〉 −∘F 𝐹 ) = 〈 ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) , 𝑙 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) |
| 35 |
|
eqid |
⊢ ( 𝐵 Func 𝐷 ) = ( 𝐵 Func 𝐷 ) |
| 36 |
|
eqid |
⊢ ( 𝐵 Nat 𝐷 ) = ( 𝐵 Nat 𝐷 ) |
| 37 |
35 36 6 8 9
|
prcofvala |
⊢ ( 𝜑 → ( 〈 𝐵 , 𝐷 〉 −∘F 𝐹 ) = 〈 ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) , 𝑙 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) |
| 38 |
31 34 37
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐶 〉 −∘F 𝐹 ) = ( 〈 𝐵 , 𝐷 〉 −∘F 𝐹 ) ) |