Metamath Proof Explorer


Theorem prcofpropd

Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025)

Ref Expression
Hypotheses prcofpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
prcofpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
prcofpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
prcofpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
prcofpropd.a ( 𝜑𝐴𝑉 )
prcofpropd.b ( 𝜑𝐵𝑉 )
prcofpropd.c ( 𝜑𝐶𝑉 )
prcofpropd.d ( 𝜑𝐷𝑉 )
prcofpropd.f ( 𝜑𝐹𝑊 )
Assertion prcofpropd ( 𝜑 → ( ⟨ 𝐴 , 𝐶 ⟩ −∘F 𝐹 ) = ( ⟨ 𝐵 , 𝐷 ⟩ −∘F 𝐹 ) )

Proof

Step Hyp Ref Expression
1 prcofpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
2 prcofpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
3 prcofpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
4 prcofpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
5 prcofpropd.a ( 𝜑𝐴𝑉 )
6 prcofpropd.b ( 𝜑𝐵𝑉 )
7 prcofpropd.c ( 𝜑𝐶𝑉 )
8 prcofpropd.d ( 𝜑𝐷𝑉 )
9 prcofpropd.f ( 𝜑𝐹𝑊 )
10 1 2 3 4 5 6 7 8 funcpropd ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )
11 10 mpteq1d ( 𝜑 → ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑘func 𝐹 ) ) = ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑘func 𝐹 ) ) )
12 10 adantr ( ( 𝜑𝑘 ∈ ( 𝐴 Func 𝐶 ) ) → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )
13 1 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( Homf𝐴 ) = ( Homf𝐵 ) )
14 2 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( compf𝐴 ) = ( compf𝐵 ) )
15 3 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
16 4 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
17 funcrcl ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) )
18 17 ad2antrl ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) )
19 18 simpld ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐴 ∈ Cat )
20 6 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐵𝑉 )
21 13 14 19 20 catpropd ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝐴 ∈ Cat ↔ 𝐵 ∈ Cat ) )
22 19 21 mpbid ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐵 ∈ Cat )
23 18 simprd ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐶 ∈ Cat )
24 8 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐷𝑉 )
25 15 16 23 24 catpropd ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) )
26 23 25 mpbid ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝐷 ∈ Cat )
27 13 14 15 16 19 22 23 26 natpropd ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) )
28 27 oveqd ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) = ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) )
29 28 mpteq1d ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑙 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 𝑎 ∈ ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) = ( 𝑎 ∈ ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) )
30 10 12 29 mpoeq123dva ( 𝜑 → ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) , 𝑙 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) = ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) , 𝑙 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) )
31 11 30 opeq12d ( 𝜑 → ⟨ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) , 𝑙 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ = ⟨ ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) , 𝑙 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ )
32 eqid ( 𝐴 Func 𝐶 ) = ( 𝐴 Func 𝐶 )
33 eqid ( 𝐴 Nat 𝐶 ) = ( 𝐴 Nat 𝐶 )
34 32 33 5 7 9 prcofvala ( 𝜑 → ( ⟨ 𝐴 , 𝐶 ⟩ −∘F 𝐹 ) = ⟨ ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐴 Func 𝐶 ) , 𝑙 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐴 Nat 𝐶 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ )
35 eqid ( 𝐵 Func 𝐷 ) = ( 𝐵 Func 𝐷 )
36 eqid ( 𝐵 Nat 𝐷 ) = ( 𝐵 Nat 𝐷 )
37 35 36 6 8 9 prcofvala ( 𝜑 → ( ⟨ 𝐵 , 𝐷 ⟩ −∘F 𝐹 ) = ⟨ ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐵 Func 𝐷 ) , 𝑙 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐵 Nat 𝐷 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ )
38 31 34 37 3eqtr4d ( 𝜑 → ( ⟨ 𝐴 , 𝐶 ⟩ −∘F 𝐹 ) = ( ⟨ 𝐵 , 𝐷 ⟩ −∘F 𝐹 ) )