| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofvalg.b |
|- B = ( D Func E ) |
| 2 |
|
prcofvalg.n |
|- N = ( D Nat E ) |
| 3 |
|
prcofvala.d |
|- ( ph -> D e. V ) |
| 4 |
|
prcofvala.e |
|- ( ph -> E e. W ) |
| 5 |
|
prcofvala.f |
|- ( ph -> F e. U ) |
| 6 |
|
opex |
|- <. D , E >. e. _V |
| 7 |
6
|
a1i |
|- ( ph -> <. D , E >. e. _V ) |
| 8 |
|
op1stg |
|- ( ( D e. V /\ E e. W ) -> ( 1st ` <. D , E >. ) = D ) |
| 9 |
3 4 8
|
syl2anc |
|- ( ph -> ( 1st ` <. D , E >. ) = D ) |
| 10 |
|
op2ndg |
|- ( ( D e. V /\ E e. W ) -> ( 2nd ` <. D , E >. ) = E ) |
| 11 |
3 4 10
|
syl2anc |
|- ( ph -> ( 2nd ` <. D , E >. ) = E ) |
| 12 |
1 2 5 7 9 11
|
prcofvalg |
|- ( ph -> ( <. D , E >. -o.F F ) = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |