| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcof1.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
| 2 |
|
prcof1.o |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = 𝑂 ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = 𝑂 ) |
| 4 |
|
eqid |
⊢ ( 𝐷 Func 𝐸 ) = ( 𝐷 Func 𝐸 ) |
| 5 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
| 7 |
6
|
func1st2nd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 8 |
7
|
funcrcl2 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝐷 ∈ Cat ) |
| 9 |
7
|
funcrcl3 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝐸 ∈ Cat ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝐹 ∈ V ) |
| 11 |
4 5 8 9 10
|
prcofvala |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 1st ‘ 〈 ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) ) |
| 13 |
|
ovex |
⊢ ( 𝐷 Func 𝐸 ) ∈ V |
| 14 |
13
|
mptex |
⊢ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) ∈ V |
| 15 |
13 13
|
mpoex |
⊢ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) ∈ V |
| 16 |
14 15
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) |
| 17 |
12 16
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) ) |
| 18 |
3 17
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝑂 = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ V ) ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) |
| 20 |
19
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ V ) ∧ 𝑘 = 𝐾 ) → ( 𝑘 ∘func 𝐹 ) = ( 𝐾 ∘func 𝐹 ) ) |
| 21 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 𝐾 ∘func 𝐹 ) ∈ V ) |
| 22 |
18 20 6 21
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 𝑂 ‘ 𝐾 ) = ( 𝐾 ∘func 𝐹 ) ) |
| 23 |
|
0fv |
⊢ ( ∅ ‘ 𝐾 ) = ∅ |
| 24 |
|
reldmprcof |
⊢ Rel dom −∘F |
| 25 |
24
|
ovprc2 |
⊢ ( ¬ 𝐹 ∈ V → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = ∅ ) |
| 26 |
25
|
fveq2d |
⊢ ( ¬ 𝐹 ∈ V → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 1st ‘ ∅ ) ) |
| 27 |
|
1st0 |
⊢ ( 1st ‘ ∅ ) = ∅ |
| 28 |
26 27
|
eqtrdi |
⊢ ( ¬ 𝐹 ∈ V → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ∅ ) |
| 29 |
2 28
|
sylan9req |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → 𝑂 = ∅ ) |
| 30 |
29
|
fveq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( 𝑂 ‘ 𝐾 ) = ( ∅ ‘ 𝐾 ) ) |
| 31 |
|
df-cofu |
⊢ ∘func = ( 𝑙 ∈ V , 𝑘 ∈ V ↦ 〈 ( ( 1st ‘ 𝑙 ) ∘ ( 1st ‘ 𝑘 ) ) , ( 𝑎 ∈ dom dom ( 2nd ‘ 𝑘 ) , 𝑏 ∈ dom dom ( 2nd ‘ 𝑘 ) ↦ ( ( ( ( 1st ‘ 𝑘 ) ‘ 𝑎 ) ( 2nd ‘ 𝑙 ) ( ( 1st ‘ 𝑘 ) ‘ 𝑏 ) ) ∘ ( 𝑎 ( 2nd ‘ 𝑘 ) 𝑏 ) ) ) 〉 ) |
| 32 |
31
|
reldmmpo |
⊢ Rel dom ∘func |
| 33 |
32
|
ovprc2 |
⊢ ( ¬ 𝐹 ∈ V → ( 𝐾 ∘func 𝐹 ) = ∅ ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( 𝐾 ∘func 𝐹 ) = ∅ ) |
| 35 |
23 30 34
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( 𝑂 ‘ 𝐾 ) = ( 𝐾 ∘func 𝐹 ) ) |
| 36 |
22 35
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐾 ) = ( 𝐾 ∘func 𝐹 ) ) |