Metamath Proof Explorer


Theorem prcof2a

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof2a.n 𝑁 = ( 𝐷 Nat 𝐸 )
prcof2a.k ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
prcof2a.l ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )
prcof2a.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = 𝑃 )
prcof2a.f ( 𝜑𝐹𝑈 )
Assertion prcof2a ( 𝜑 → ( 𝐾 𝑃 𝐿 ) = ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) )

Proof

Step Hyp Ref Expression
1 prcof2a.n 𝑁 = ( 𝐷 Nat 𝐸 )
2 prcof2a.k ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
3 prcof2a.l ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )
4 prcof2a.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = 𝑃 )
5 prcof2a.f ( 𝜑𝐹𝑈 )
6 eqid ( 𝐷 Func 𝐸 ) = ( 𝐷 Func 𝐸 )
7 2 func1st2nd ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
8 7 funcrcl2 ( 𝜑𝐷 ∈ Cat )
9 7 funcrcl3 ( 𝜑𝐸 ∈ Cat )
10 6 1 8 9 5 prcofvala ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ )
11 10 fveq2d ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = ( 2nd ‘ ⟨ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ ) )
12 ovex ( 𝐷 Func 𝐸 ) ∈ V
13 12 mptex ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘func 𝐹 ) ) ∈ V
14 12 12 mpoex ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ∈ V
15 13 14 op2nd ( 2nd ‘ ⟨ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) ⟩ ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) )
16 11 15 eqtrdi ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) )
17 4 16 eqtr3d ( 𝜑𝑃 = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ) )
18 simprl ( ( 𝜑 ∧ ( 𝑘 = 𝐾𝑙 = 𝐿 ) ) → 𝑘 = 𝐾 )
19 simprr ( ( 𝜑 ∧ ( 𝑘 = 𝐾𝑙 = 𝐿 ) ) → 𝑙 = 𝐿 )
20 18 19 oveq12d ( ( 𝜑 ∧ ( 𝑘 = 𝐾𝑙 = 𝐿 ) ) → ( 𝑘 𝑁 𝑙 ) = ( 𝐾 𝑁 𝐿 ) )
21 20 mpteq1d ( ( 𝜑 ∧ ( 𝑘 = 𝐾𝑙 = 𝐿 ) ) → ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) = ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) )
22 ovex ( 𝐾 𝑁 𝐿 ) ∈ V
23 22 mptex ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ∈ V
24 23 a1i ( 𝜑 → ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) ∈ V )
25 17 21 2 3 24 ovmpod ( 𝜑 → ( 𝐾 𝑃 𝐿 ) = ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) )