| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcof2a.n |
⊢ 𝑁 = ( 𝐷 Nat 𝐸 ) |
| 2 |
|
prcof2a.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
| 3 |
|
prcof2a.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) |
| 4 |
|
prcof2a.p |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = 𝑃 ) |
| 5 |
|
prcof2a.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑈 ) |
| 6 |
|
eqid |
⊢ ( 𝐷 Func 𝐸 ) = ( 𝐷 Func 𝐸 ) |
| 7 |
2
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 8 |
7
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 9 |
7
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 10 |
6 1 8 9 5
|
prcofvala |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 2nd ‘ 〈 ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) ) |
| 12 |
|
ovex |
⊢ ( 𝐷 Func 𝐸 ) ∈ V |
| 13 |
12
|
mptex |
⊢ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) ∈ V |
| 14 |
12 12
|
mpoex |
⊢ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) ∈ V |
| 15 |
13 14
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 𝐹 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) 〉 ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) |
| 16 |
11 15
|
eqtrdi |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) ) |
| 17 |
4 16
|
eqtr3d |
⊢ ( 𝜑 → 𝑃 = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) ) |
| 18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐾 ∧ 𝑙 = 𝐿 ) ) → 𝑘 = 𝐾 ) |
| 19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐾 ∧ 𝑙 = 𝐿 ) ) → 𝑙 = 𝐿 ) |
| 20 |
18 19
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐾 ∧ 𝑙 = 𝐿 ) ) → ( 𝑘 𝑁 𝑙 ) = ( 𝐾 𝑁 𝐿 ) ) |
| 21 |
20
|
mpteq1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐾 ∧ 𝑙 = 𝐿 ) ) → ( 𝑎 ∈ ( 𝑘 𝑁 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) = ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) |
| 22 |
|
ovex |
⊢ ( 𝐾 𝑁 𝐿 ) ∈ V |
| 23 |
22
|
mptex |
⊢ ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ∈ V |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ∈ V ) |
| 25 |
17 21 2 3 24
|
ovmpod |
⊢ ( 𝜑 → ( 𝐾 𝑃 𝐿 ) = ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) |