| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcof2a.n |
|- N = ( D Nat E ) |
| 2 |
|
prcof2a.k |
|- ( ph -> K e. ( D Func E ) ) |
| 3 |
|
prcof2a.l |
|- ( ph -> L e. ( D Func E ) ) |
| 4 |
|
prcof2a.p |
|- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) |
| 5 |
|
prcof2a.f |
|- ( ph -> F e. U ) |
| 6 |
|
eqid |
|- ( D Func E ) = ( D Func E ) |
| 7 |
2
|
func1st2nd |
|- ( ph -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) ) |
| 8 |
7
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 9 |
7
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 10 |
6 1 8 9 5
|
prcofvala |
|- ( ph -> ( <. D , E >. -o.F F ) = <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) |
| 11 |
10
|
fveq2d |
|- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = ( 2nd ` <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) ) |
| 12 |
|
ovex |
|- ( D Func E ) e. _V |
| 13 |
12
|
mptex |
|- ( k e. ( D Func E ) |-> ( k o.func F ) ) e. _V |
| 14 |
12 12
|
mpoex |
|- ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) e. _V |
| 15 |
13 14
|
op2nd |
|- ( 2nd ` <. ( k e. ( D Func E ) |-> ( k o.func F ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) = ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) |
| 16 |
11 15
|
eqtrdi |
|- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) ) |
| 17 |
4 16
|
eqtr3d |
|- ( ph -> P = ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) ) |
| 18 |
|
simprl |
|- ( ( ph /\ ( k = K /\ l = L ) ) -> k = K ) |
| 19 |
|
simprr |
|- ( ( ph /\ ( k = K /\ l = L ) ) -> l = L ) |
| 20 |
18 19
|
oveq12d |
|- ( ( ph /\ ( k = K /\ l = L ) ) -> ( k N l ) = ( K N L ) ) |
| 21 |
20
|
mpteq1d |
|- ( ( ph /\ ( k = K /\ l = L ) ) -> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) = ( a e. ( K N L ) |-> ( a o. ( 1st ` F ) ) ) ) |
| 22 |
|
ovex |
|- ( K N L ) e. _V |
| 23 |
22
|
mptex |
|- ( a e. ( K N L ) |-> ( a o. ( 1st ` F ) ) ) e. _V |
| 24 |
23
|
a1i |
|- ( ph -> ( a e. ( K N L ) |-> ( a o. ( 1st ` F ) ) ) e. _V ) |
| 25 |
17 21 2 3 24
|
ovmpod |
|- ( ph -> ( K P L ) = ( a e. ( K N L ) |-> ( a o. ( 1st ` F ) ) ) ) |