Description: The domain of -o.F is a relation. (Contributed by Zhi Wang, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmprcof | ⊢ Rel dom −∘F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prcof | ⊢ −∘F = ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑑 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑒 ⦌ ⦋ ( 𝑑 Func 𝑒 ) / 𝑏 ⦌ 〈 ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) , ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) 〉 ) | |
| 2 | 1 | reldmmpo | ⊢ Rel dom −∘F |