Metamath Proof Explorer


Definition df-prcof

Description: Definition of pre-composition functors. The object part of the pre-composition functor given by F pre-composes a functor with F ; the morphism part pre-composes a natural transformation with the object part of F , in terms of function composition. Comments before the definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders,Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 3 Nov 2025). The notation -o.F is inspired by this page: https://1lab.dev/Cat.Functor.Compose.html .

The pre-composition functor can also be defined as a transposed curry of the functor composition bifunctor ( precofval3 ). But such definition requires an explicit third category. prcoftposcurfuco and prcoftposcurfucoa prove the equivalence. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Assertion df-prcof −∘F = ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 1st𝑝 ) / 𝑑 ( 2nd𝑝 ) / 𝑒 ( 𝑑 Func 𝑒 ) / 𝑏 ⟨ ( 𝑘𝑏 ↦ ( 𝑘func 𝑓 ) ) , ( 𝑘𝑏 , 𝑙𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) ) ) ⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprcof −∘F
1 vp 𝑝
2 cvv V
3 vf 𝑓
4 c1st 1st
5 1 cv 𝑝
6 5 4 cfv ( 1st𝑝 )
7 vd 𝑑
8 c2nd 2nd
9 5 8 cfv ( 2nd𝑝 )
10 ve 𝑒
11 7 cv 𝑑
12 cfunc Func
13 10 cv 𝑒
14 11 13 12 co ( 𝑑 Func 𝑒 )
15 vb 𝑏
16 vk 𝑘
17 15 cv 𝑏
18 16 cv 𝑘
19 ccofu func
20 3 cv 𝑓
21 18 20 19 co ( 𝑘func 𝑓 )
22 16 17 21 cmpt ( 𝑘𝑏 ↦ ( 𝑘func 𝑓 ) )
23 vl 𝑙
24 va 𝑎
25 cnat Nat
26 11 13 25 co ( 𝑑 Nat 𝑒 )
27 23 cv 𝑙
28 18 27 26 co ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 )
29 24 cv 𝑎
30 20 4 cfv ( 1st𝑓 )
31 29 30 ccom ( 𝑎 ∘ ( 1st𝑓 ) )
32 24 28 31 cmpt ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) )
33 16 23 17 17 32 cmpo ( 𝑘𝑏 , 𝑙𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) ) )
34 22 33 cop ⟨ ( 𝑘𝑏 ↦ ( 𝑘func 𝑓 ) ) , ( 𝑘𝑏 , 𝑙𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) ) ) ⟩
35 15 14 34 csb ( 𝑑 Func 𝑒 ) / 𝑏 ⟨ ( 𝑘𝑏 ↦ ( 𝑘func 𝑓 ) ) , ( 𝑘𝑏 , 𝑙𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) ) ) ⟩
36 10 9 35 csb ( 2nd𝑝 ) / 𝑒 ( 𝑑 Func 𝑒 ) / 𝑏 ⟨ ( 𝑘𝑏 ↦ ( 𝑘func 𝑓 ) ) , ( 𝑘𝑏 , 𝑙𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) ) ) ⟩
37 7 6 36 csb ( 1st𝑝 ) / 𝑑 ( 2nd𝑝 ) / 𝑒 ( 𝑑 Func 𝑒 ) / 𝑏 ⟨ ( 𝑘𝑏 ↦ ( 𝑘func 𝑓 ) ) , ( 𝑘𝑏 , 𝑙𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) ) ) ⟩
38 1 3 2 2 37 cmpo ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 1st𝑝 ) / 𝑑 ( 2nd𝑝 ) / 𝑒 ( 𝑑 Func 𝑒 ) / 𝑏 ⟨ ( 𝑘𝑏 ↦ ( 𝑘func 𝑓 ) ) , ( 𝑘𝑏 , 𝑙𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) ) ) ⟩ )
39 0 38 wceq −∘F = ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 1st𝑝 ) / 𝑑 ( 2nd𝑝 ) / 𝑒 ( 𝑑 Func 𝑒 ) / 𝑏 ⟨ ( 𝑘𝑏 ↦ ( 𝑘func 𝑓 ) ) , ( 𝑘𝑏 , 𝑙𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st𝑓 ) ) ) ) ⟩ )