Description: Definition of pre-composition functors. The object part of the pre-composition functor given by F pre-composes a functor with F ; the morphism part pre-composes a natural transformation with the object part of F , in terms of function composition. Comments before the definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders,Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 3 Nov 2025). The notation -o.F is inspired by this page: https://1lab.dev/Cat.Functor.Compose.html .
The pre-composition functor can also be defined as a transposed curry of the functor composition bifunctor ( precofval3 ). But such definition requires an explicit third category. prcoftposcurfuco and prcoftposcurfucoa prove the equivalence. (Contributed by Zhi Wang, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-prcof | ⊢ −∘F = ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑑 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑒 ⦌ ⦋ ( 𝑑 Func 𝑒 ) / 𝑏 ⦌ 〈 ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) , ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cprcof | ⊢ −∘F | |
| 1 | vp | ⊢ 𝑝 | |
| 2 | cvv | ⊢ V | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | c1st | ⊢ 1st | |
| 5 | 1 | cv | ⊢ 𝑝 |
| 6 | 5 4 | cfv | ⊢ ( 1st ‘ 𝑝 ) |
| 7 | vd | ⊢ 𝑑 | |
| 8 | c2nd | ⊢ 2nd | |
| 9 | 5 8 | cfv | ⊢ ( 2nd ‘ 𝑝 ) |
| 10 | ve | ⊢ 𝑒 | |
| 11 | 7 | cv | ⊢ 𝑑 |
| 12 | cfunc | ⊢ Func | |
| 13 | 10 | cv | ⊢ 𝑒 |
| 14 | 11 13 12 | co | ⊢ ( 𝑑 Func 𝑒 ) |
| 15 | vb | ⊢ 𝑏 | |
| 16 | vk | ⊢ 𝑘 | |
| 17 | 15 | cv | ⊢ 𝑏 |
| 18 | 16 | cv | ⊢ 𝑘 |
| 19 | ccofu | ⊢ ∘func | |
| 20 | 3 | cv | ⊢ 𝑓 |
| 21 | 18 20 19 | co | ⊢ ( 𝑘 ∘func 𝑓 ) |
| 22 | 16 17 21 | cmpt | ⊢ ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) |
| 23 | vl | ⊢ 𝑙 | |
| 24 | va | ⊢ 𝑎 | |
| 25 | cnat | ⊢ Nat | |
| 26 | 11 13 25 | co | ⊢ ( 𝑑 Nat 𝑒 ) |
| 27 | 23 | cv | ⊢ 𝑙 |
| 28 | 18 27 26 | co | ⊢ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) |
| 29 | 24 | cv | ⊢ 𝑎 |
| 30 | 20 4 | cfv | ⊢ ( 1st ‘ 𝑓 ) |
| 31 | 29 30 | ccom | ⊢ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) |
| 32 | 24 28 31 | cmpt | ⊢ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) |
| 33 | 16 23 17 17 32 | cmpo | ⊢ ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) |
| 34 | 22 33 | cop | ⊢ 〈 ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) , ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) 〉 |
| 35 | 15 14 34 | csb | ⊢ ⦋ ( 𝑑 Func 𝑒 ) / 𝑏 ⦌ 〈 ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) , ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) 〉 |
| 36 | 10 9 35 | csb | ⊢ ⦋ ( 2nd ‘ 𝑝 ) / 𝑒 ⦌ ⦋ ( 𝑑 Func 𝑒 ) / 𝑏 ⦌ 〈 ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) , ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) 〉 |
| 37 | 7 6 36 | csb | ⊢ ⦋ ( 1st ‘ 𝑝 ) / 𝑑 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑒 ⦌ ⦋ ( 𝑑 Func 𝑒 ) / 𝑏 ⦌ 〈 ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) , ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) 〉 |
| 38 | 1 3 2 2 37 | cmpo | ⊢ ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑑 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑒 ⦌ ⦋ ( 𝑑 Func 𝑒 ) / 𝑏 ⦌ 〈 ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) , ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) 〉 ) |
| 39 | 0 38 | wceq | ⊢ −∘F = ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑑 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑒 ⦌ ⦋ ( 𝑑 Func 𝑒 ) / 𝑏 ⦌ 〈 ( 𝑘 ∈ 𝑏 ↦ ( 𝑘 ∘func 𝑓 ) ) , ( 𝑘 ∈ 𝑏 , 𝑙 ∈ 𝑏 ↦ ( 𝑎 ∈ ( 𝑘 ( 𝑑 Nat 𝑒 ) 𝑙 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝑓 ) ) ) ) 〉 ) |