| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcoffunc.r |
⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) |
| 2 |
|
prcoffunc.e |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 3 |
|
prcoftposcurfuco.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
| 4 |
|
prcoftposcurfuco.o |
⊢ ( 𝜑 → ⚬ = ( 〈 𝑄 , 𝑅 〉 curryF ( ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∘func ( 𝑄 swapF 𝑅 ) ) ) ) |
| 5 |
|
prcoftposcurfuco.m |
⊢ ( 𝜑 → 𝑀 = ( ( 1st ‘ ⚬ ) ‘ 〈 𝐹 , 𝐺 〉 ) ) |
| 6 |
|
prcoftposcurfuco.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 7 |
|
eqid |
⊢ ( 𝐷 Func 𝐸 ) = ( 𝐷 Func 𝐸 ) |
| 8 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 9 |
6
|
funcrcl3 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 10 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 11 |
7 8 9 2 10 6
|
prcofval |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎 ∘ 𝐹 ) ) ) 〉 ) |
| 12 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 〈 𝐹 , 𝐺 〉 ) ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 〈 𝐹 , 𝐺 〉 ) ) ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎 ∘ 𝐹 ) ) ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎 ∘ 𝐹 ) ) ) ) |
| 14 |
1 7 8 6 2 12 13 3 4 5
|
precofval3 |
⊢ ( 𝜑 → 〈 ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘 ∘func 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎 ∘ 𝐹 ) ) ) 〉 = 𝑀 ) |
| 15 |
11 14
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 〈 𝐹 , 𝐺 〉 ) = 𝑀 ) |