Metamath Proof Explorer


Theorem prcoftposcurfuco

Description: The pre-composition functor is the transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
prcoffunc.e ( 𝜑𝐸 ∈ Cat )
prcoftposcurfuco.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
prcoftposcurfuco.o ( 𝜑 = ( ⟨ 𝑄 , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( 𝑄 swapF 𝑅 ) ) ) )
prcoftposcurfuco.m ( 𝜑𝑀 = ( ( 1st ) ‘ ⟨ 𝐹 , 𝐺 ⟩ ) )
prcoftposcurfuco.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
Assertion prcoftposcurfuco ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) = 𝑀 )

Proof

Step Hyp Ref Expression
1 prcoffunc.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 prcoffunc.e ( 𝜑𝐸 ∈ Cat )
3 prcoftposcurfuco.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
4 prcoftposcurfuco.o ( 𝜑 = ( ⟨ 𝑄 , 𝑅 ⟩ curryF ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∘func ( 𝑄 swapF 𝑅 ) ) ) )
5 prcoftposcurfuco.m ( 𝜑𝑀 = ( ( 1st ) ‘ ⟨ 𝐹 , 𝐺 ⟩ ) )
6 prcoftposcurfuco.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
7 eqid ( 𝐷 Func 𝐸 ) = ( 𝐷 Func 𝐸 )
8 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
9 6 funcrcl3 ( 𝜑𝐷 ∈ Cat )
10 relfunc Rel ( 𝐶 Func 𝐷 )
11 7 8 9 2 10 6 prcofval ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎𝐹 ) ) ) ⟩ )
12 eqidd ( 𝜑 → ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) )
13 eqidd ( 𝜑 → ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎𝐹 ) ) ) = ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎𝐹 ) ) ) )
14 1 7 8 6 2 12 13 3 4 5 precofval3 ( 𝜑 → ⟨ ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑘func𝐹 , 𝐺 ⟩ ) ) , ( 𝑘 ∈ ( 𝐷 Func 𝐸 ) , 𝑙 ∈ ( 𝐷 Func 𝐸 ) ↦ ( 𝑎 ∈ ( 𝑘 ( 𝐷 Nat 𝐸 ) 𝑙 ) ↦ ( 𝑎𝐹 ) ) ) ⟩ = 𝑀 )
15 11 14 eqtrd ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F𝐹 , 𝐺 ⟩ ) = 𝑀 )