| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcoffunc.r |
|- R = ( D FuncCat E ) |
| 2 |
|
prcoffunc.e |
|- ( ph -> E e. Cat ) |
| 3 |
|
prcoftposcurfuco.q |
|- Q = ( C FuncCat D ) |
| 4 |
|
prcoftposcurfuco.o |
|- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) |
| 5 |
|
prcoftposcurfuco.m |
|- ( ph -> M = ( ( 1st ` .o. ) ` <. F , G >. ) ) |
| 6 |
|
prcoftposcurfuco.f |
|- ( ph -> F ( C Func D ) G ) |
| 7 |
|
eqid |
|- ( D Func E ) = ( D Func E ) |
| 8 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 9 |
6
|
funcrcl3 |
|- ( ph -> D e. Cat ) |
| 10 |
|
relfunc |
|- Rel ( C Func D ) |
| 11 |
7 8 9 2 10 6
|
prcofval |
|- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. F ) ) ) >. ) |
| 12 |
|
eqidd |
|- ( ph -> ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) = ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) ) |
| 13 |
|
eqidd |
|- ( ph -> ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. F ) ) ) = ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. F ) ) ) ) |
| 14 |
1 7 8 6 2 12 13 3 4 5
|
precofval3 |
|- ( ph -> <. ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. F ) ) ) >. = M ) |
| 15 |
11 14
|
eqtrd |
|- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = M ) |