| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcoffunc.r |
⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) |
| 2 |
|
prcoffunc.e |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 3 |
|
prcoftposcurfuco.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
| 4 |
|
prcoftposcurfuco.o |
⊢ ( 𝜑 → ⚬ = ( 〈 𝑄 , 𝑅 〉 curryF ( ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) ∘func ( 𝑄 swapF 𝑅 ) ) ) ) |
| 5 |
|
prcoftposcurfucoa.m |
⊢ ( 𝜑 → 𝑀 = ( ( 1st ‘ ⚬ ) ‘ 𝐹 ) ) |
| 6 |
|
prcoftposcurfucoa.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 7 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 8 |
|
1st2nd |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 9 |
7 6 8
|
sylancr |
⊢ ( 𝜑 → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = ( 〈 𝐷 , 𝐸 〉 −∘F 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 11 |
9
|
fveq2d |
⊢ ( 𝜑 → ( ( 1st ‘ ⚬ ) ‘ 𝐹 ) = ( ( 1st ‘ ⚬ ) ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 12 |
5 11
|
eqtrd |
⊢ ( 𝜑 → 𝑀 = ( ( 1st ‘ ⚬ ) ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 13 |
6
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 14 |
1 2 3 4 12 13
|
prcoftposcurfuco |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) = 𝑀 ) |
| 15 |
10 14
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 𝑀 ) |