Description: The domain of -o.F is a relation. (Contributed by Zhi Wang, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmprcof | |- Rel dom -o.F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prcof | |- -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. ) |
|
| 2 | 1 | reldmmpo | |- Rel dom -o.F |