Metamath Proof Explorer


Theorem prcoffunca2

Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r R = D FuncCat E
prcoffunc.e φ E Cat
prcoffunc.s S = C FuncCat E
prcoffunca.f φ F C Func D
prcoffunca2.k No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. K , L >. ) with typecode |-
Assertion prcoffunca2 φ K R Func S L

Proof

Step Hyp Ref Expression
1 prcoffunc.r R = D FuncCat E
2 prcoffunc.e φ E Cat
3 prcoffunc.s S = C FuncCat E
4 prcoffunca.f φ F C Func D
5 prcoffunca2.k Could not format ( ph -> ( <. D , E >. -o.F F ) = <. K , L >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. K , L >. ) with typecode |-
6 1 2 3 4 prcoffunca Could not format ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) e. ( R Func S ) ) with typecode |-
7 5 6 eqeltrrd φ K L R Func S
8 df-br K R Func S L K L R Func S
9 7 8 sylibr φ K R Func S L