Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prcoffunc.r | ⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) | |
| prcoffunc.e | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | ||
| prcoffunc.s | ⊢ 𝑆 = ( 𝐶 FuncCat 𝐸 ) | ||
| prcoffunca.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| prcoffunca2.k | ⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 𝐾 , 𝐿 〉 ) | ||
| Assertion | prcoffunca2 | ⊢ ( 𝜑 → 𝐾 ( 𝑅 Func 𝑆 ) 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcoffunc.r | ⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) | |
| 2 | prcoffunc.e | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | |
| 3 | prcoffunc.s | ⊢ 𝑆 = ( 𝐶 FuncCat 𝐸 ) | |
| 4 | prcoffunca.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 5 | prcoffunca2.k | ⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 𝐾 , 𝐿 〉 ) | |
| 6 | 1 2 3 4 | prcoffunca | ⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ∈ ( 𝑅 Func 𝑆 ) ) |
| 7 | 5 6 | eqeltrrd | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
| 8 | df-br | ⊢ ( 𝐾 ( 𝑅 Func 𝑆 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝑅 Func 𝑆 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( 𝜑 → 𝐾 ( 𝑅 Func 𝑆 ) 𝐿 ) |