Metamath Proof Explorer


Theorem prcoffunca2

Description: The pre-composition functor is a functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
prcoffunc.e ( 𝜑𝐸 ∈ Cat )
prcoffunc.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
prcoffunca.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
prcoffunca2.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐾 , 𝐿 ⟩ )
Assertion prcoffunca2 ( 𝜑𝐾 ( 𝑅 Func 𝑆 ) 𝐿 )

Proof

Step Hyp Ref Expression
1 prcoffunc.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 prcoffunc.e ( 𝜑𝐸 ∈ Cat )
3 prcoffunc.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
4 prcoffunca.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
5 prcoffunca2.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐾 , 𝐿 ⟩ )
6 1 2 3 4 prcoffunca ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ∈ ( 𝑅 Func 𝑆 ) )
7 5 6 eqeltrrd ( 𝜑 → ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝑅 Func 𝑆 ) )
8 df-br ( 𝐾 ( 𝑅 Func 𝑆 ) 𝐿 ↔ ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝑅 Func 𝑆 ) )
9 7 8 sylibr ( 𝜑𝐾 ( 𝑅 Func 𝑆 ) 𝐿 )