| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdran.1 |
⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 2 |
|
lmdran.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Func 1 ) ) |
| 3 |
|
lmdran.l |
⊢ 𝐿 = ( 𝐶 Δfunc 1 ) |
| 4 |
|
lmdran.y |
⊢ ( 𝜑 → 𝑌 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) |
| 5 |
|
cmdfval2 |
⊢ ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) = ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) |
| 6 |
5
|
breqi |
⊢ ( 𝑋 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) 𝑀 ↔ 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) |
| 8 |
7
|
up1st2nd |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑋 ( 〈 ( 1st ‘ ( 𝐶 Δfunc 𝐷 ) ) , ( 2nd ‘ ( 𝐶 Δfunc 𝐷 ) ) 〉 ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) |
| 9 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 10 |
9
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 11 |
8 10
|
uprcl3 |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 13 |
8 12
|
uprcl4 |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 14 |
11 13
|
jca |
⊢ ( ( 𝜑 ∧ 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) |
| 16 |
15
|
up1st2nd |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑌 ( 〈 ( 1st ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) , ( 2nd ‘ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) 〉 ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) |
| 17 |
16 10
|
uprcl3 |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑌 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) |
| 19 |
|
eqid |
⊢ ( 1 FuncCat 𝐶 ) = ( 1 FuncCat 𝐶 ) |
| 20 |
19
|
fucbas |
⊢ ( 1 Func 𝐶 ) = ( Base ‘ ( 1 FuncCat 𝐶 ) ) |
| 21 |
16 20
|
uprcl4 |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑌 ∈ ( 1 Func 𝐶 ) ) |
| 22 |
|
relfunc |
⊢ Rel ( 1 Func 𝐶 ) |
| 23 |
21 22
|
oppfrcllem |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑌 ≠ ∅ ) |
| 24 |
18 23
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ≠ ∅ ) |
| 25 |
|
fvfundmfvn0 |
⊢ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ≠ ∅ → ( 𝑋 ∈ dom ( 1st ‘ 𝐿 ) ∧ Fun ( ( 1st ‘ 𝐿 ) ↾ { 𝑋 } ) ) ) |
| 26 |
25
|
simpld |
⊢ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ dom ( 1st ‘ 𝐿 ) ) |
| 27 |
24 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑋 ∈ dom ( 1st ‘ 𝐿 ) ) |
| 28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 1 ∈ TermCat ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) |
| 30 |
29
|
func1st2nd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐹 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐹 ) ) |
| 31 |
30
|
funcrcl3 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 32 |
12 28 31 3
|
diag1f1o |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) ) |
| 33 |
|
f1of |
⊢ ( ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( 1 Func 𝐶 ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( 1 Func 𝐶 ) ) |
| 35 |
34
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → dom ( 1st ‘ 𝐿 ) = ( Base ‘ 𝐶 ) ) |
| 36 |
17 35
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → dom ( 1st ‘ 𝐿 ) = ( Base ‘ 𝐶 ) ) |
| 37 |
27 36
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 38 |
17 37
|
jca |
⊢ ( ( 𝜑 ∧ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) |
| 39 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑌 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) |
| 40 |
|
eqid |
⊢ ( 𝐶 Δfunc 𝐷 ) = ( 𝐶 Δfunc 𝐷 ) |
| 41 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐺 ∈ ( 𝐷 Func 1 ) ) |
| 42 |
31
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 43 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) = ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ) |
| 44 |
3 40 41 42 43
|
prcofdiag |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ∘func 𝐿 ) = ( 𝐶 Δfunc 𝐷 ) ) |
| 45 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 46 |
19 42 9 41
|
prcoffunca |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ∈ ( ( 1 FuncCat 𝐶 ) Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 47 |
31 28 19 3
|
diagffth |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐿 ∈ ( ( 𝐶 Full ( 1 FuncCat 𝐶 ) ) ∩ ( 𝐶 Faith ( 1 FuncCat 𝐶 ) ) ) ) |
| 48 |
47
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐿 ∈ ( ( 𝐶 Full ( 1 FuncCat 𝐶 ) ) ∩ ( 𝐶 Faith ( 1 FuncCat 𝐶 ) ) ) ) |
| 49 |
|
f1ofo |
⊢ ( ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( 1 Func 𝐶 ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –onto→ ( 1 Func 𝐶 ) ) |
| 50 |
32 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –onto→ ( 1 Func 𝐶 ) ) |
| 51 |
50
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝐿 ) : ( Base ‘ 𝐶 ) –onto→ ( 1 Func 𝐶 ) ) |
| 52 |
12 20 39 44 45 46 48 51
|
uptr2a |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 Func 𝐶 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ↔ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) ) |
| 53 |
14 38 52
|
bibiad |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ↔ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) ) |
| 54 |
|
eqid |
⊢ ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) = ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) |
| 55 |
19 9 54
|
lanval2 |
⊢ ( 𝐺 ∈ ( 𝐷 Func 1 ) → ( 𝐺 ( 〈 𝐷 , 1 〉 Lan 𝐶 ) 𝐹 ) = ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ) |
| 56 |
2 55
|
syl |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝐷 , 1 〉 Lan 𝐶 ) 𝐹 ) = ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) ) |
| 57 |
56
|
breqd |
⊢ ( 𝜑 → ( 𝑌 ( 𝐺 ( 〈 𝐷 , 1 〉 Lan 𝐶 ) 𝐹 ) 𝑀 ↔ 𝑌 ( ( 〈 1 , 𝐶 〉 −∘F 𝐺 ) ( ( 1 FuncCat 𝐶 ) UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ) ) |
| 58 |
53 57
|
bitr4d |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝐶 Δfunc 𝐷 ) ( 𝐶 UP ( 𝐷 FuncCat 𝐶 ) ) 𝐹 ) 𝑀 ↔ 𝑌 ( 𝐺 ( 〈 𝐷 , 1 〉 Lan 𝐶 ) 𝐹 ) 𝑀 ) ) |
| 59 |
6 58
|
bitrid |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝐶 Colimit 𝐷 ) ‘ 𝐹 ) 𝑀 ↔ 𝑌 ( 𝐺 ( 〈 𝐷 , 1 〉 Lan 𝐶 ) 𝐹 ) 𝑀 ) ) |