| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islan.r |
⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) |
| 2 |
|
islan.s |
⊢ 𝑆 = ( 𝐶 FuncCat 𝐸 ) |
| 3 |
|
islan.k |
⊢ 𝐾 = ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) |
| 4 |
1 2 3
|
islan |
⊢ ( 𝑥 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) → 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) ) → 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 8 |
2
|
fucbas |
⊢ ( 𝐶 Func 𝐸 ) = ( Base ‘ 𝑆 ) |
| 9 |
8
|
uprcl |
⊢ ( 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) → ( 𝐾 ∈ ( 𝑅 Func 𝑆 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) ) |
| 10 |
9
|
simprd |
⊢ ( 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 12 |
3
|
eqcomi |
⊢ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 𝐾 |
| 13 |
12
|
a1i |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 𝐾 ) |
| 14 |
1 2 7 11 13
|
lanval |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) |
| 15 |
6 14
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → 𝑥 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) ) |
| 16 |
5 15
|
impbida |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝑥 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) ↔ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) ) |
| 17 |
16
|
eqrdv |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) |