Metamath Proof Explorer


Theorem lanval2

Description: The set of left Kan extensions is the set of universal pairs. Therefore, the explicit universal property can be recovered by isup2 and upciclem1 . (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses islan.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
islan.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
islan.k 𝐾 = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 )
Assertion lanval2 ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )

Proof

Step Hyp Ref Expression
1 islan.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 islan.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
3 islan.k 𝐾 = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 )
4 1 2 3 islan ( 𝑥 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )
5 4 adantl ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) ) → 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )
6 simpr ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )
7 simpl ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
8 2 fucbas ( 𝐶 Func 𝐸 ) = ( Base ‘ 𝑆 )
9 8 uprcl ( 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) → ( 𝐾 ∈ ( 𝑅 Func 𝑆 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) )
10 9 simprd ( 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) )
11 10 adantl ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) )
12 3 eqcomi ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = 𝐾
13 12 a1i ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = 𝐾 )
14 1 2 7 11 13 lanval ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )
15 6 14 eleqtrrd ( ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) → 𝑥 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) )
16 5 15 impbida ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝑥 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) ↔ 𝑥 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) )
17 16 eqrdv ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )