Metamath Proof Explorer


Theorem islan

Description: A left Kan extension is a universal pair. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses islan.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
islan.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
islan.k 𝐾 = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 )
Assertion islan ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → 𝐿 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )

Proof

Step Hyp Ref Expression
1 islan.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 islan.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
3 islan.k 𝐾 = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 )
4 id ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) )
5 lanrcl ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) )
6 5 simpld ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
7 5 simprd ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → 𝑋 ∈ ( 𝐶 Func 𝐸 ) )
8 3 eqcomi ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = 𝐾
9 8 a1i ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = 𝐾 )
10 1 2 6 7 9 lanval ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )
11 4 10 eleqtrd ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → 𝐿 ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )