Metamath Proof Explorer


Theorem islan

Description: A left Kan extension is a universal pair. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses islan.r
|- R = ( D FuncCat E )
islan.s
|- S = ( C FuncCat E )
islan.k
|- K = ( <. D , E >. -o.F F )
Assertion islan
|- ( L e. ( F ( <. C , D >. Lan E ) X ) -> L e. ( K ( R UP S ) X ) )

Proof

Step Hyp Ref Expression
1 islan.r
 |-  R = ( D FuncCat E )
2 islan.s
 |-  S = ( C FuncCat E )
3 islan.k
 |-  K = ( <. D , E >. -o.F F )
4 id
 |-  ( L e. ( F ( <. C , D >. Lan E ) X ) -> L e. ( F ( <. C , D >. Lan E ) X ) )
5 lanrcl
 |-  ( L e. ( F ( <. C , D >. Lan E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) )
6 5 simpld
 |-  ( L e. ( F ( <. C , D >. Lan E ) X ) -> F e. ( C Func D ) )
7 5 simprd
 |-  ( L e. ( F ( <. C , D >. Lan E ) X ) -> X e. ( C Func E ) )
8 3 eqcomi
 |-  ( <. D , E >. -o.F F ) = K
9 8 a1i
 |-  ( L e. ( F ( <. C , D >. Lan E ) X ) -> ( <. D , E >. -o.F F ) = K )
10 1 2 6 7 9 lanval
 |-  ( L e. ( F ( <. C , D >. Lan E ) X ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) )
11 4 10 eleqtrd
 |-  ( L e. ( F ( <. C , D >. Lan E ) X ) -> L e. ( K ( R UP S ) X ) )