| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islan.r |
|- R = ( D FuncCat E ) |
| 2 |
|
islan.s |
|- S = ( C FuncCat E ) |
| 3 |
|
islan.k |
|- K = ( <. D , E >. -o.F F ) |
| 4 |
|
id |
|- ( L e. ( F ( <. C , D >. Lan E ) X ) -> L e. ( F ( <. C , D >. Lan E ) X ) ) |
| 5 |
|
lanrcl |
|- ( L e. ( F ( <. C , D >. Lan E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) |
| 6 |
5
|
simpld |
|- ( L e. ( F ( <. C , D >. Lan E ) X ) -> F e. ( C Func D ) ) |
| 7 |
5
|
simprd |
|- ( L e. ( F ( <. C , D >. Lan E ) X ) -> X e. ( C Func E ) ) |
| 8 |
3
|
eqcomi |
|- ( <. D , E >. -o.F F ) = K |
| 9 |
8
|
a1i |
|- ( L e. ( F ( <. C , D >. Lan E ) X ) -> ( <. D , E >. -o.F F ) = K ) |
| 10 |
1 2 6 7 9
|
lanval |
|- ( L e. ( F ( <. C , D >. Lan E ) X ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) |
| 11 |
4 10
|
eleqtrd |
|- ( L e. ( F ( <. C , D >. Lan E ) X ) -> L e. ( K ( R UP S ) X ) ) |