| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanval.r |
|- R = ( D FuncCat E ) |
| 2 |
|
lanval.s |
|- S = ( C FuncCat E ) |
| 3 |
|
lanval.f |
|- ( ph -> F e. ( C Func D ) ) |
| 4 |
|
lanval.x |
|- ( ph -> X e. ( C Func E ) ) |
| 5 |
|
lanval.k |
|- ( ph -> ( <. D , E >. -o.F F ) = K ) |
| 6 |
3
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 7 |
6
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 8 |
6
|
funcrcl3 |
|- ( ph -> D e. Cat ) |
| 9 |
4
|
func1st2nd |
|- ( ph -> ( 1st ` X ) ( C Func E ) ( 2nd ` X ) ) |
| 10 |
9
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 11 |
1 2 7 8 10
|
lanfval |
|- ( ph -> ( <. C , D >. Lan E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) |
| 12 |
|
simprl |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> f = F ) |
| 13 |
12
|
oveq2d |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = ( <. D , E >. -o.F F ) ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F F ) = K ) |
| 15 |
13 14
|
eqtrd |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = K ) |
| 16 |
|
simprr |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> x = X ) |
| 17 |
15 16
|
oveq12d |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) = ( K ( R UP S ) X ) ) |
| 18 |
|
ovexd |
|- ( ph -> ( K ( R UP S ) X ) e. _V ) |
| 19 |
11 17 3 4 18
|
ovmpod |
|- ( ph -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) |