Metamath Proof Explorer


Theorem lanval

Description: Value of the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses lanval.r
|- R = ( D FuncCat E )
lanval.s
|- S = ( C FuncCat E )
lanval.f
|- ( ph -> F e. ( C Func D ) )
lanval.x
|- ( ph -> X e. ( C Func E ) )
lanval.k
|- ( ph -> ( <. D , E >. -o.F F ) = K )
Assertion lanval
|- ( ph -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) )

Proof

Step Hyp Ref Expression
1 lanval.r
 |-  R = ( D FuncCat E )
2 lanval.s
 |-  S = ( C FuncCat E )
3 lanval.f
 |-  ( ph -> F e. ( C Func D ) )
4 lanval.x
 |-  ( ph -> X e. ( C Func E ) )
5 lanval.k
 |-  ( ph -> ( <. D , E >. -o.F F ) = K )
6 3 func1st2nd
 |-  ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )
7 6 funcrcl2
 |-  ( ph -> C e. Cat )
8 6 funcrcl3
 |-  ( ph -> D e. Cat )
9 4 func1st2nd
 |-  ( ph -> ( 1st ` X ) ( C Func E ) ( 2nd ` X ) )
10 9 funcrcl3
 |-  ( ph -> E e. Cat )
11 1 2 7 8 10 lanfval
 |-  ( ph -> ( <. C , D >. Lan E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) )
12 simprl
 |-  ( ( ph /\ ( f = F /\ x = X ) ) -> f = F )
13 12 oveq2d
 |-  ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = ( <. D , E >. -o.F F ) )
14 5 adantr
 |-  ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F F ) = K )
15 13 14 eqtrd
 |-  ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = K )
16 simprr
 |-  ( ( ph /\ ( f = F /\ x = X ) ) -> x = X )
17 15 16 oveq12d
 |-  ( ( ph /\ ( f = F /\ x = X ) ) -> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) = ( K ( R UP S ) X ) )
18 ovexd
 |-  ( ph -> ( K ( R UP S ) X ) e. _V )
19 11 17 3 4 18 ovmpod
 |-  ( ph -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) )