| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanval.r |
|- R = ( D FuncCat E ) |
| 2 |
|
lanval.s |
|- S = ( C FuncCat E ) |
| 3 |
|
lanval.f |
|- ( ph -> F e. ( C Func D ) ) |
| 4 |
|
lanval.x |
|- ( ph -> X e. ( C Func E ) ) |
| 5 |
|
ranval.k |
|- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) |
| 6 |
|
ranval.o |
|- O = ( oppCat ` R ) |
| 7 |
|
ranval.p |
|- P = ( oppCat ` S ) |
| 8 |
3
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 9 |
8
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 10 |
8
|
funcrcl3 |
|- ( ph -> D e. Cat ) |
| 11 |
4
|
func1st2nd |
|- ( ph -> ( 1st ` X ) ( C Func E ) ( 2nd ` X ) ) |
| 12 |
11
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 13 |
1 2 9 10 12 6 7
|
ranfval |
|- ( ph -> ( <. C , D >. Ran E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) ) ) |
| 14 |
|
simprl |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> f = F ) |
| 15 |
14
|
oveq2d |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = ( <. D , E >. -o.F F ) ) |
| 16 |
5
|
adantr |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. ) |
| 17 |
15 16
|
eqtrd |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = <. J , K >. ) |
| 18 |
17
|
fveq2d |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( oppFunc ` ( <. D , E >. -o.F f ) ) = ( oppFunc ` <. J , K >. ) ) |
| 19 |
|
df-ov |
|- ( J oppFunc K ) = ( oppFunc ` <. J , K >. ) |
| 20 |
1 12 2 3 5
|
prcoffunca2 |
|- ( ph -> J ( R Func S ) K ) |
| 21 |
|
oppfval |
|- ( J ( R Func S ) K -> ( J oppFunc K ) = <. J , tpos K >. ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( J oppFunc K ) = <. J , tpos K >. ) |
| 23 |
19 22
|
eqtr3id |
|- ( ph -> ( oppFunc ` <. J , K >. ) = <. J , tpos K >. ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( oppFunc ` <. J , K >. ) = <. J , tpos K >. ) |
| 25 |
18 24
|
eqtrd |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( oppFunc ` ( <. D , E >. -o.F f ) ) = <. J , tpos K >. ) |
| 26 |
|
simprr |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> x = X ) |
| 27 |
25 26
|
oveq12d |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( O UP P ) x ) = ( <. J , tpos K >. ( O UP P ) X ) ) |
| 28 |
|
ovexd |
|- ( ph -> ( <. J , tpos K >. ( O UP P ) X ) e. _V ) |
| 29 |
13 27 3 4 28
|
ovmpod |
|- ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) |