| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relfunc |
|- Rel ( C Func D ) |
| 2 |
1
|
brrelex12i |
|- ( F ( C Func D ) G -> ( F e. _V /\ G e. _V ) ) |
| 3 |
|
simpl |
|- ( ( f = F /\ g = G ) -> f = F ) |
| 4 |
|
simpr |
|- ( ( f = F /\ g = G ) -> g = G ) |
| 5 |
4
|
tposeqd |
|- ( ( f = F /\ g = G ) -> tpos g = tpos G ) |
| 6 |
3 5
|
opeq12d |
|- ( ( f = F /\ g = G ) -> <. f , tpos g >. = <. F , tpos G >. ) |
| 7 |
|
df-oppf |
|- oppFunc = ( f e. _V , g e. _V |-> <. f , tpos g >. ) |
| 8 |
|
opex |
|- <. F , tpos G >. e. _V |
| 9 |
6 7 8
|
ovmpoa |
|- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = <. F , tpos G >. ) |
| 10 |
2 9
|
syl |
|- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) |