| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 2 |
|
id |
|- ( F ( C Func D ) G -> F ( C Func D ) G ) |
| 3 |
1 2
|
funcfn2 |
|- ( F ( C Func D ) G -> G Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 4 |
|
fnrel |
|- ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) -> Rel G ) |
| 5 |
3 4
|
syl |
|- ( F ( C Func D ) G -> Rel G ) |
| 6 |
|
relxp |
|- Rel ( ( Base ` C ) X. ( Base ` C ) ) |
| 7 |
3
|
fndmd |
|- ( F ( C Func D ) G -> dom G = ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 8 |
7
|
releqd |
|- ( F ( C Func D ) G -> ( Rel dom G <-> Rel ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 9 |
6 8
|
mpbiri |
|- ( F ( C Func D ) G -> Rel dom G ) |
| 10 |
5 9
|
jca |
|- ( F ( C Func D ) G -> ( Rel G /\ Rel dom G ) ) |