Metamath Proof Explorer


Theorem oppfvallem

Description: Lemma for oppfval . (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Assertion oppfvallem F C Func D G Rel G Rel dom G

Proof

Step Hyp Ref Expression
1 eqid Base C = Base C
2 id F C Func D G F C Func D G
3 1 2 funcfn2 F C Func D G G Fn Base C × Base C
4 fnrel G Fn Base C × Base C Rel G
5 3 4 syl F C Func D G Rel G
6 relxp Rel Base C × Base C
7 3 fndmd F C Func D G dom G = Base C × Base C
8 7 releqd F C Func D G Rel dom G Rel Base C × Base C
9 6 8 mpbiri F C Func D G Rel dom G
10 5 9 jca F C Func D G Rel G Rel dom G