Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Opposite functors
oppfvallem
Next ⟩
oppfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppfvallem
Description:
Lemma for
oppfval
.
(Contributed by
Zhi Wang
, 13-Nov-2025)
Ref
Expression
Assertion
oppfvallem
⊢
F
C
Func
D
G
→
Rel
⁡
G
∧
Rel
⁡
dom
⁡
G
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
C
=
Base
C
2
id
⊢
F
C
Func
D
G
→
F
C
Func
D
G
3
1
2
funcfn2
⊢
F
C
Func
D
G
→
G
Fn
Base
C
×
Base
C
4
fnrel
⊢
G
Fn
Base
C
×
Base
C
→
Rel
⁡
G
5
3
4
syl
⊢
F
C
Func
D
G
→
Rel
⁡
G
6
relxp
⊢
Rel
⁡
Base
C
×
Base
C
7
3
fndmd
⊢
F
C
Func
D
G
→
dom
⁡
G
=
Base
C
×
Base
C
8
7
releqd
⊢
F
C
Func
D
G
→
Rel
⁡
dom
⁡
G
↔
Rel
⁡
Base
C
×
Base
C
9
6
8
mpbiri
⊢
F
C
Func
D
G
→
Rel
⁡
dom
⁡
G
10
5
9
jca
⊢
F
C
Func
D
G
→
Rel
⁡
G
∧
Rel
⁡
dom
⁡
G