| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 2 |
|
id |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 3 |
1 2
|
funcfn2 |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 4 |
|
fnrel |
⊢ ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → Rel 𝐺 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → Rel 𝐺 ) |
| 6 |
|
relxp |
⊢ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 7 |
3
|
fndmd |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → dom 𝐺 = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 8 |
7
|
releqd |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel dom 𝐺 ↔ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 9 |
6 8
|
mpbiri |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → Rel dom 𝐺 ) |
| 10 |
5 9
|
jca |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |