Metamath Proof Explorer


Theorem oppfvallem

Description: Lemma for oppfval . (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Assertion oppfvallem ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
2 id ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 1 2 funcfn2 ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
4 fnrel ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → Rel 𝐺 )
5 3 4 syl ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → Rel 𝐺 )
6 relxp Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) )
7 3 fndmd ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → dom 𝐺 = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
8 7 releqd ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel dom 𝐺 ↔ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) )
9 6 8 mpbiri ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → Rel dom 𝐺 )
10 5 9 jca ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) )