Metamath Proof Explorer


Theorem oppfval

Description: Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Assertion oppfval Could not format assertion : No typesetting found for |- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 relfunc Rel C Func D
2 1 brrelex12i F C Func D G F V G V
3 simpl f = F g = G f = F
4 simpr f = F g = G g = G
5 4 tposeqd f = F g = G tpos g = tpos G
6 3 5 opeq12d f = F g = G f tpos g = F tpos G
7 df-oppf Could not format oppFunc = ( f e. _V , g e. _V |-> <. f , tpos g >. ) : No typesetting found for |- oppFunc = ( f e. _V , g e. _V |-> <. f , tpos g >. ) with typecode |-
8 opex F tpos G V
9 6 7 8 ovmpoa Could not format ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = <. F , tpos G >. ) : No typesetting found for |- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = <. F , tpos G >. ) with typecode |-
10 2 9 syl Could not format ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) : No typesetting found for |- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) with typecode |-