Metamath Proof Explorer


Theorem ranval

Description: Value of the set of right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses lanval.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
lanval.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
lanval.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
lanval.x ( 𝜑𝑋 ∈ ( 𝐶 Func 𝐸 ) )
ranval.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐽 , 𝐾 ⟩ )
ranval.o 𝑂 = ( oppCat ‘ 𝑅 )
ranval.p 𝑃 = ( oppCat ‘ 𝑆 )
Assertion ranval ( 𝜑 → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) = ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lanval.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 lanval.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
3 lanval.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
4 lanval.x ( 𝜑𝑋 ∈ ( 𝐶 Func 𝐸 ) )
5 ranval.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐽 , 𝐾 ⟩ )
6 ranval.o 𝑂 = ( oppCat ‘ 𝑅 )
7 ranval.p 𝑃 = ( oppCat ‘ 𝑆 )
8 3 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
9 8 funcrcl2 ( 𝜑𝐶 ∈ Cat )
10 8 funcrcl3 ( 𝜑𝐷 ∈ Cat )
11 4 func1st2nd ( 𝜑 → ( 1st𝑋 ) ( 𝐶 Func 𝐸 ) ( 2nd𝑋 ) )
12 11 funcrcl3 ( 𝜑𝐸 ∈ Cat )
13 1 2 9 10 12 6 7 ranfval ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( oppFunc ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) ) ( 𝑂 UP 𝑃 ) 𝑥 ) ) )
14 simprl ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → 𝑓 = 𝐹 )
15 14 oveq2d ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) )
16 5 adantr ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐽 , 𝐾 ⟩ )
17 15 16 eqtrd ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) = ⟨ 𝐽 , 𝐾 ⟩ )
18 17 fveq2d ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( oppFunc ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) ) = ( oppFunc ‘ ⟨ 𝐽 , 𝐾 ⟩ ) )
19 df-ov ( 𝐽 oppFunc 𝐾 ) = ( oppFunc ‘ ⟨ 𝐽 , 𝐾 ⟩ )
20 1 12 2 3 5 prcoffunca2 ( 𝜑𝐽 ( 𝑅 Func 𝑆 ) 𝐾 )
21 oppfval ( 𝐽 ( 𝑅 Func 𝑆 ) 𝐾 → ( 𝐽 oppFunc 𝐾 ) = ⟨ 𝐽 , tpos 𝐾 ⟩ )
22 20 21 syl ( 𝜑 → ( 𝐽 oppFunc 𝐾 ) = ⟨ 𝐽 , tpos 𝐾 ⟩ )
23 19 22 eqtr3id ( 𝜑 → ( oppFunc ‘ ⟨ 𝐽 , 𝐾 ⟩ ) = ⟨ 𝐽 , tpos 𝐾 ⟩ )
24 23 adantr ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( oppFunc ‘ ⟨ 𝐽 , 𝐾 ⟩ ) = ⟨ 𝐽 , tpos 𝐾 ⟩ )
25 18 24 eqtrd ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( oppFunc ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) ) = ⟨ 𝐽 , tpos 𝐾 ⟩ )
26 simprr ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → 𝑥 = 𝑋 )
27 25 26 oveq12d ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( ( oppFunc ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) ) ( 𝑂 UP 𝑃 ) 𝑥 ) = ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) )
28 ovexd ( 𝜑 → ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) ∈ V )
29 13 27 3 4 28 ovmpod ( 𝜑 → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) = ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) )