| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanfval.r |
|- R = ( D FuncCat E ) |
| 2 |
|
lanfval.s |
|- S = ( C FuncCat E ) |
| 3 |
|
lanfval.c |
|- ( ph -> C e. U ) |
| 4 |
|
lanfval.d |
|- ( ph -> D e. V ) |
| 5 |
|
lanfval.e |
|- ( ph -> E e. W ) |
| 6 |
|
df-lan |
|- Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) |
| 7 |
6
|
a1i |
|- ( ph -> Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) ) |
| 8 |
|
fvexd |
|- ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> ( 1st ` p ) e. _V ) |
| 9 |
|
simprl |
|- ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> p = <. C , D >. ) |
| 10 |
9
|
fveq2d |
|- ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> ( 1st ` p ) = ( 1st ` <. C , D >. ) ) |
| 11 |
|
op1stg |
|- ( ( C e. U /\ D e. V ) -> ( 1st ` <. C , D >. ) = C ) |
| 12 |
3 4 11
|
syl2anc |
|- ( ph -> ( 1st ` <. C , D >. ) = C ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> ( 1st ` <. C , D >. ) = C ) |
| 14 |
10 13
|
eqtrd |
|- ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> ( 1st ` p ) = C ) |
| 15 |
|
fvexd |
|- ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> ( 2nd ` p ) e. _V ) |
| 16 |
|
simplrl |
|- ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> p = <. C , D >. ) |
| 17 |
16
|
fveq2d |
|- ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> ( 2nd ` p ) = ( 2nd ` <. C , D >. ) ) |
| 18 |
|
op2ndg |
|- ( ( C e. U /\ D e. V ) -> ( 2nd ` <. C , D >. ) = D ) |
| 19 |
3 4 18
|
syl2anc |
|- ( ph -> ( 2nd ` <. C , D >. ) = D ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> ( 2nd ` <. C , D >. ) = D ) |
| 21 |
17 20
|
eqtrd |
|- ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> ( 2nd ` p ) = D ) |
| 22 |
|
simplr |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> c = C ) |
| 23 |
|
simpr |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> d = D ) |
| 24 |
22 23
|
oveq12d |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( c Func d ) = ( C Func D ) ) |
| 25 |
|
simpllr |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( p = <. C , D >. /\ e = E ) ) |
| 26 |
25
|
simprd |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> e = E ) |
| 27 |
22 26
|
oveq12d |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( c Func e ) = ( C Func E ) ) |
| 28 |
23 26
|
oveq12d |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( d FuncCat e ) = ( D FuncCat E ) ) |
| 29 |
28 1
|
eqtr4di |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( d FuncCat e ) = R ) |
| 30 |
22 26
|
oveq12d |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( c FuncCat e ) = ( C FuncCat E ) ) |
| 31 |
30 2
|
eqtr4di |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( c FuncCat e ) = S ) |
| 32 |
29 31
|
oveq12d |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( d FuncCat e ) UP ( c FuncCat e ) ) = ( R UP S ) ) |
| 33 |
23 26
|
opeq12d |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> <. d , e >. = <. D , E >. ) |
| 34 |
33
|
oveq1d |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( <. d , e >. -o.F f ) = ( <. D , E >. -o.F f ) ) |
| 35 |
|
eqidd |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> x = x ) |
| 36 |
32 34 35
|
oveq123d |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) = ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) |
| 37 |
24 27 36
|
mpoeq123dv |
|- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) |
| 38 |
15 21 37
|
csbied2 |
|- ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) |
| 39 |
8 14 38
|
csbied2 |
|- ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) |
| 40 |
3
|
elexd |
|- ( ph -> C e. _V ) |
| 41 |
4
|
elexd |
|- ( ph -> D e. _V ) |
| 42 |
40 41
|
opelxpd |
|- ( ph -> <. C , D >. e. ( _V X. _V ) ) |
| 43 |
5
|
elexd |
|- ( ph -> E e. _V ) |
| 44 |
|
ovex |
|- ( C Func D ) e. _V |
| 45 |
|
ovex |
|- ( C Func E ) e. _V |
| 46 |
44 45
|
mpoex |
|- ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) e. _V |
| 47 |
46
|
a1i |
|- ( ph -> ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) e. _V ) |
| 48 |
7 39 42 43 47
|
ovmpod |
|- ( ph -> ( <. C , D >. Lan E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) |