| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanfval.r |
⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) |
| 2 |
|
lanfval.s |
⊢ 𝑆 = ( 𝐶 FuncCat 𝐸 ) |
| 3 |
|
lanfval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 4 |
|
lanfval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 5 |
|
lanfval.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
| 6 |
|
df-lan |
⊢ Lan = ( 𝑝 ∈ ( V × V ) , 𝑒 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → Lan = ( 𝑝 ∈ ( V × V ) , 𝑒 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) ) ) |
| 8 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) → ( 1st ‘ 𝑝 ) ∈ V ) |
| 9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) → 𝑝 = 〈 𝐶 , 𝐷 〉 ) |
| 10 |
9
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) → ( 1st ‘ 𝑝 ) = ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 11 |
|
op1stg |
⊢ ( ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 12 |
3 4 11
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 14 |
10 13
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) → ( 1st ‘ 𝑝 ) = 𝐶 ) |
| 15 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑝 ) ∈ V ) |
| 16 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) → 𝑝 = 〈 𝐶 , 𝐷 〉 ) |
| 17 |
16
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 18 |
|
op2ndg |
⊢ ( ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 19 |
3 4 18
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 21 |
17 20
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑝 ) = 𝐷 ) |
| 22 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑐 = 𝐶 ) |
| 23 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
| 24 |
22 23
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑐 Func 𝑑 ) = ( 𝐶 Func 𝐷 ) ) |
| 25 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) |
| 26 |
25
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑒 = 𝐸 ) |
| 27 |
22 26
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑐 Func 𝑒 ) = ( 𝐶 Func 𝐸 ) ) |
| 28 |
23 26
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑑 FuncCat 𝑒 ) = ( 𝐷 FuncCat 𝐸 ) ) |
| 29 |
28 1
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑑 FuncCat 𝑒 ) = 𝑅 ) |
| 30 |
22 26
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑐 FuncCat 𝑒 ) = ( 𝐶 FuncCat 𝐸 ) ) |
| 31 |
30 2
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑐 FuncCat 𝑒 ) = 𝑆 ) |
| 32 |
29 31
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) = ( 𝑅 UP 𝑆 ) ) |
| 33 |
23 26
|
opeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 〈 𝑑 , 𝑒 〉 = 〈 𝐷 , 𝐸 〉 ) |
| 34 |
33
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) = ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ) |
| 35 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑥 = 𝑥 ) |
| 36 |
32 34 35
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) = ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) |
| 37 |
24 27 36
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) ) |
| 38 |
15 21 37
|
csbied2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) ∧ 𝑐 = 𝐶 ) → ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) ) |
| 39 |
8 14 38
|
csbied2 |
⊢ ( ( 𝜑 ∧ ( 𝑝 = 〈 𝐶 , 𝐷 〉 ∧ 𝑒 = 𝐸 ) ) → ⦋ ( 1st ‘ 𝑝 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) ) |
| 40 |
3
|
elexd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 41 |
4
|
elexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 42 |
40 41
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( V × V ) ) |
| 43 |
5
|
elexd |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 44 |
|
ovex |
⊢ ( 𝐶 Func 𝐷 ) ∈ V |
| 45 |
|
ovex |
⊢ ( 𝐶 Func 𝐸 ) ∈ V |
| 46 |
44 45
|
mpoex |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) ∈ V |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) ∈ V ) |
| 48 |
7 39 42 43 47
|
ovmpod |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) ) |