Metamath Proof Explorer


Theorem lanval

Description: Value of the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses lanval.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
lanval.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
lanval.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
lanval.x ( 𝜑𝑋 ∈ ( 𝐶 Func 𝐸 ) )
lanval.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = 𝐾 )
Assertion lanval ( 𝜑 → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lanval.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 lanval.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
3 lanval.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
4 lanval.x ( 𝜑𝑋 ∈ ( 𝐶 Func 𝐸 ) )
5 lanval.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = 𝐾 )
6 3 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
7 6 funcrcl2 ( 𝜑𝐶 ∈ Cat )
8 6 funcrcl3 ( 𝜑𝐷 ∈ Cat )
9 4 func1st2nd ( 𝜑 → ( 1st𝑋 ) ( 𝐶 Func 𝐸 ) ( 2nd𝑋 ) )
10 9 funcrcl3 ( 𝜑𝐸 ∈ Cat )
11 1 2 7 8 10 lanfval ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) )
12 simprl ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → 𝑓 = 𝐹 )
13 12 oveq2d ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) )
14 5 adantr ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = 𝐾 )
15 13 14 eqtrd ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) = 𝐾 )
16 simprr ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → 𝑥 = 𝑋 )
17 15 16 oveq12d ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑥 = 𝑋 ) ) → ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )
18 ovexd ( 𝜑 → ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ∈ V )
19 11 17 3 4 18 ovmpod ( 𝜑 → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )