| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanval.r |
⊢ 𝑅 = ( 𝐷 FuncCat 𝐸 ) |
| 2 |
|
lanval.s |
⊢ 𝑆 = ( 𝐶 FuncCat 𝐸 ) |
| 3 |
|
lanval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 4 |
|
lanval.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 5 |
|
lanval.k |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 𝐾 ) |
| 6 |
3
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 7 |
6
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 |
6
|
funcrcl3 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 9 |
4
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ 𝑋 ) ) |
| 10 |
9
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 11 |
1 2 7 8 10
|
lanfval |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( 𝐶 Func 𝐸 ) ↦ ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) ) ) |
| 12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) ) → 𝑓 = 𝐹 ) |
| 13 |
12
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) = ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 𝐾 ) |
| 15 |
13 14
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) ) → ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) = 𝐾 ) |
| 16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) ) → 𝑥 = 𝑋 ) |
| 17 |
15 16
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝑋 ) ) → ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝑓 ) ( 𝑅 UP 𝑆 ) 𝑥 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) |
| 18 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ∈ V ) |
| 19 |
11 17 3 4 18
|
ovmpod |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) = ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) ) |