Metamath Proof Explorer


Theorem islan2

Description: A left Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses islan.r
|- R = ( D FuncCat E )
islan.s
|- S = ( C FuncCat E )
islan.k
|- K = ( <. D , E >. -o.F F )
Assertion islan2
|- ( L ( F ( <. C , D >. Lan E ) X ) A -> L ( K ( R UP S ) X ) A )

Proof

Step Hyp Ref Expression
1 islan.r
 |-  R = ( D FuncCat E )
2 islan.s
 |-  S = ( C FuncCat E )
3 islan.k
 |-  K = ( <. D , E >. -o.F F )
4 1 2 3 islan
 |-  ( <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) -> <. L , A >. e. ( K ( R UP S ) X ) )
5 df-br
 |-  ( L ( F ( <. C , D >. Lan E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) )
6 df-br
 |-  ( L ( K ( R UP S ) X ) A <-> <. L , A >. e. ( K ( R UP S ) X ) )
7 4 5 6 3imtr4i
 |-  ( L ( F ( <. C , D >. Lan E ) X ) A -> L ( K ( R UP S ) X ) A )